Goal 3: Advance Translational Research

Develop alternatives for patients for whom routine red cell transfusion is unavailable or impractical

There is a compelling need to advance research to understand the physiology governing the safety and efficacy of hemoglobin-based oxygen therapeutics functioning outside the red cell.

Tags (Keywords associated with the idea)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Adequate numbers of red blood cells are required to sustain human life. Neurocognitive deficits and mortality in acutely anemic humans increase significantly at a hemoglobin level of below 5 g/dL even in the absence of significant cardiovascular disease. At extremely low hemoglobin levels, alternative treatments (supplemental or hyperbaric oxygen, sedation, muscle paralysis and mechanical ventilation) are of only limited benefit and are not without risk. Several classes of patients cannot be routinely transfused with red blood cells. These classes of patients for whom blood is not an option would include patients who will not accept transfusion for religious or personal reasons, patients who due to multiple prior transfusions have developed red cell antibodies without the option for compatible red cells, and massive trauma patients needing treatment in a remote location. The development of cell-free hemoglobin-based oxygen carriers, stable at room temperature and not requiring cross-matching prior to transfusion as a red cell substitute, has been a sought after goal for several decades, yet to date all attempts have met with failure during clinical trials. There is a compelling need to advance research to understand the physiology governing the safety and efficacy of hemoglobin-based oxygen therapeutics functioning outside the red cell.

Feasibility and challenges of addressing this CQ or CC :

Multiple physiologic insults and adverse events seen with earlier modified hemoglobins, compared to banked red blood cells, have been described and are now better, but not completely, understood. Advances in hemoglobin modification could allow for successful use in a variety of clinical scenarios with life-saving results. Additional clinical indications could be investigated and established, such as identification of clinical situations where additional oxygen delivery could modulate the effects of chronic ischemic conditions. In addition, the hemoglobin molecule could be modified to deliver additional therapeutic benefit.

Name of idea submitter and other team members who worked on this idea : Office of Blood Research and Review, CBER, FDA

Voting

8 net votes
13 up votes
5 down votes
Active
Idea No. 800