Goal 3: Advance Translational Research

Expediting Gene and Cell Therapies to the Clinics

What methodologies will best enhance the translation of technologies for gene and cell therapies into potential products for clinical application and commercial development?

 

In considering a strategy for NHLBI investment in gene therapy, it is important to note that we are only at the beginning of a revolution that will eventually impact biomedical research across a broad range of specialties. NHLBI/NIH needs to create funding mechanisms that support key steps in these translational programs. For example, support of IND enabling nonclinical studies, or the manufacturing of clinical grade vector, are the types of biomedical research that are difficult to support through traditional investigator- initiated mechanisms.

Substantial gaps exist in key translational steps such as improved processes for vector manufacturing and better assays for characterizing vectors. NHLBI/NIH should support the development of these regulatory sciences and help create the infrastructure in areas of nonclinical safety testing and vector manufacturing that is accessible to academic investigators.

Tags (Keywords associated with the idea)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

Technological advances in vector discovery over the last decade have set the stage for a wave of potential clinical successes in diseases relevant to NHLBI. These advances include the use of lentiviral vectors for bone marrow directed gene therapy with thalassemia emerging as an attractive target and with compelling clinical data with novel AAV serotypes in the treatment of hemophilia B, and possibly hemophilia A in the future.

 

Furthermore, an important milestone was achieved in November 2012 with the approval of the AAV-based product Glybera by the European Medicines Agency for the treatment of a rare form of hypertriglyceridemia. This first and only commercially approved gene therapy product demonstrated regulatory receptivity for gene therapy which fueled a long overdue investment by the biopharmaceutical industry in gene therapy.

Finally, gene editing technologies such as CRISPR (clustered, regularly interspersed short palindromic repeats) are most suited for ex vivo approaches of gene therapy such as those based on engineered bone marrow stems cells for diseases like sickle cell anemia. These types of approaches could substantially reduce the risk of insertional mutagenesis that plagues lentiviral vectors and could improve expression profiles of the corrected cells by utilizing endogenous regulatory sequences.

Feasibility and challenges of addressing this CQ or CC :

It is increasingly being recognized that establishing standardized assays for evaluating product potency and purity such as “pharmacologic” regulation will be critical for the success of gene therapy. NHLBI/NIH can also play a significant role in the development of second generation gene therapy technologies with enhanced safety and efficacy.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

66 net votes
97 up votes
31 down votes
Active
Idea No. 103