Goal 2: Reduce Human Disease

In pulmonary arterial hypertension (PAH), how can right ventricular function be improved in the setting of increased afterload

Pulmonary arterial hypertension (PAH) is a complex, progressive condition characterized by high blood pressure in the lungs and restriction of flow through the pulmonary arterial system. Significant improvements have been made in medical management with through approved pulmonary vasodilator therapies. However, long-term right ventricular afterload reductions have still not yet been achieved. The process by which the ...more »

Submitted by (@katherinek)

Voting

65 net votes
72 up votes
7 down votes
Active

Goal 1: Promote Human Health

Role of the lymphatic system in heart, lung, blood, sleep health and diseases

What is the role of lymphatic system in normal function of the heart? Do dysfunctional lymphatics contribute to heart failure? Do lymphatics have a role in recovery after MI? It has been reported that lymphatic vasculature transport HDL during reverse cholesterol transfer. Do lymphatics have a role in atherosclerosis? What is the contribution of lymphatic system to asthma or COPD? Does the lymphatic system contribute ...more »

Submitted by (@nhlbiforumadministrator1)

Voting

50 net votes
77 up votes
27 down votes
Active

Goal 2: Reduce Human Disease

How can we non-invasively, but still accurately, measure blood pressure in the pulmonary arteries?

Pulmonary hypertension (PH) is a complex, progressive condition characterized by high blood pressure in the lungs. The gold standard for measuring pressures in the pulmonary arteries is a right heart catheterization, where a special catheter is guided through the right side of the heart and into the pulmonary artery, the main vessel carrying blood to the lungs. This measurement is essential, as it allows physicians and ...more »

Submitted by (@katherinek)

Voting

67 net votes
75 up votes
8 down votes
Active

Goal 2: Reduce Human Disease

Anemia, oxygen delivery, and red blood cell transfusion

In neonatal, pediatric, and adult patients with critical illness, what is the best means to identify: (1) the degree to which anemia contributes to insufficient oxygen (O2) delivery and (2) the likelihood that O2 delivery will be improved by red blood cell (RBC) transfusion? These questions are most relevant to critically ill populations that exhibit unique physiology, including those with low cardiac output (cardiac ...more »

Submitted by (@nareg.roubinian)

Voting

40 net votes
54 up votes
14 down votes
Active

Goal 3: Advance Translational Research

Lipid and lipoprotein metabolism in the CNS

The analysis of lipoprotein metabolism has traditionally been restricted to the easily accessible circulation and peripheral tissues. Very little work has been done behind the blood brain barrier, where many of the lipid carrying or metabolizing genes are also expressed. Yet we know very little about their functions there, although for instance ApoE4 is THE primary risk factor for late-onset Alzheimer's disease. Conventional ...more »

Submitted by (@joachim.herz)

Voting

-4 net votes
7 up votes
11 down votes
Active

Goal 2: Reduce Human Disease

Mitigating risks due to the RBC storage lesion and vulnerable patients

What are the underlying dependencies (genomic, metabolic, disease) in individual donors that either accelerate or delay the changes to red blood cells during refrigerated storage? What methods of preparation might protect patients from the risks posed by the accelerated degradation of RBCs provided by "poor storers"? What characteristics of individual patients make them particularly vulnerable to transfusion of red ...more »

Submitted by (@andrew.dunham)

Voting

3 net votes
3 up votes
0 down votes
Active

Goal 2: Reduce Human Disease

Apheresis Medicine in the Management of Sickle Cell Disease

Despite advances in care, patients with sickle cell disease have significant morbidity and mortality. One challenge is the optimal use of simple vs exchange transfusion vs no transfusion when managing these patients. Simple transfusions lead to iron overload while exchange transfusions may expose patients to increase numbers of red blood cell units. The mechanism of benefit from transfusion (oxygen delivery vs marrow ...more »

Submitted by (@bsachais)

Voting

130 net votes
152 up votes
22 down votes
Active