Goal 2: Reduce Human Disease

Fibrosis Across Organs: Bringing Together Investigators of Fibrosis of the Heart, Lungs and Bone Marrow

Fibrosis can affect essentially any tissue or organ, including the heart, lungs and bone marrow. Effective anti-fibrotic therapy has long been elusive, and transplantation has been the only therapy capable of restoring patient function as fibrotic diseases progress to organ failure. Although these diseases present clinically with organ-specific manifestations, they are now thought to share many common pathogenetic mechanisms. ...more »

Submitted by (@amtager)

Voting

16 net votes
20 up votes
4 down votes
Active

Goal 3: Advance Translational Research

Novel Mechanism for Clinical Trials of New Pro-Hemostatic Agents in Hemophilia

There are new exciting novel pro-hemostatic therapeutics in early phase clinical trials for hemophilia and hemophilia inhibitor patients. Yet, it is difficult to design randomized trials to compare these agents, or compare them with standard treatment, given the small sample size and competing studies for such patients. It is critical to develop novel approaches to compare new agents in rare populations. For example, ...more »

Submitted by (@ragni01)

Voting

6 net votes
15 up votes
9 down votes
Active

Goal 3: Advance Translational Research

Identification of autoantigens that elicit pathogenic immune responses in cardiovascular diseases

Pathogenic immune responses participate in the pathogenesis of many cardiovascular diseases. However, the autoantigens and foreign antigens that elicit the pathogenic immune responses have been poorly identified. Currently, the regulatory mechanisms on immune responses associated with diseases got some attentions. But, without detailed characterizations of this wide spectrum of autoantigens and foreign antigens in patients ...more »

Submitted by (@xfyang)

Voting

26 net votes
28 up votes
2 down votes
Active

Goal 3: Advance Translational Research

Develop biomarker panel to predict CVD risk in -omics era

There is a need to utilize the vast data generated in -omics research to develop biomarker panels for better prediction of cardiovascular disease (CVD) risks. •Cardiovascular diseases develop over decades and different panels of markers may be required for different stages •Lead molecules as potential biomarkers need to be selected by a panel of experts •Standard procedures about sample preparation, data acquisition, ...more »

Submitted by (@nhlbiforumadministrator)

Voting

7 net votes
14 up votes
7 down votes
Active