Goal 2: Reduce Human Disease

Genetic and Molecular Tools for Drug Allergy - Hypersensitivity

As the current chair of the Research and Training Division, I would like to convey that the AAAAI membership would like the NHLBI to consider the following in the development of its strategic plan: Given that more patients are treated with newer and better targeted medications including chemotherapy, monoclonal antibodies, small molecules and others that have increased the number of hypersensitivity reactions, which ...more »

Submitted by (@wheeze)

Voting

-4 net votes
10 up votes
14 down votes
Active

Goal 3: Advance Translational Research

Genetics and Genomics of Heart Disease

Identification of new genetic/genomic variants and risk genes often opens a new window to explore the fundamental molecular mechanisms underlying a disease and to develop new methods and strategies for diagnosis and treatment. Existing genomic variants and/or mutations explain only 10% to 20% heritability of common heart diseases. Much remains to be done in this important area. However, most genetic projects are discovery-driven ...more »

Submitted by (@wangq2)

Voting

-1 net votes
5 up votes
6 down votes
Active

Goal 2: Reduce Human Disease

Does lowering circulating lipoprotein(a) levels influence cardiovascular outcomes?

A comprehensive research strategy and plan is needed to determine the most efficient, safe, cost-effective and widely applicable strategy to decrease circulating levels of lipoprotein(a) and to determine whether lowering circulating lipoprotein(a) levels will reduce the risk of developing cardiovascular disease such as a heart attack or a stroke as well as the progression of atherosclerosis or aortic stenosis.

Submitted by (@serevill)

Voting

235 net votes
297 up votes
62 down votes
Active

Goal 3: Advance Translational Research

Use isogenic iPS cells to advance Precision Medicine

The goals of Precision Medicine can be achieved if we determine the biological basis of disease-associated variants for NHLBI diseases. Advances in genetic research have yielded hundreds of disease-associated DNA polymorphisms, yet we lack robust methods to experimentally test their functional relevance in human cells. Determining the molecular and cellular basis of human phenotypic variation is one of the great challenges ...more »

Submitted by (@bconklin)

Voting

-19 net votes
8 up votes
27 down votes
Active

Goal 2: Reduce Human Disease

Understanding the Genetic & Epigenetic Basis of Congenital Heart Disease?

Over the last thirty years, our fundamental understanding of the genetics and pathogenesis of congenital heart disease has lagged the tremendous advances in the surgical and clinical care of infants with this group of disorders. We need to close this gap with investigation into the genetic basis of congenital heart malformations to develop new models of disease. The goall is translate an improved molecular genetic and ...more »

Submitted by (@jamesr.priestmd)

Voting

22 net votes
37 up votes
15 down votes
Active