Goal 1: Promote Human Health

Cardiac Gene Networks

What is the level of intra-tissue variation of cardiac development gene regulatory networks at single cell resolution?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

2 net votes
16 up votes
14 down votes
Active

Goal 2: Reduce Human Disease

Improving the phenotyping of the major (chronic) heart, lung, and blood diseases

Which phenotypic and molecular characteristics predict differential responses to therapy in individuals with chronic heart, lung, blood, and sleep (HLBS) diseases?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

• Enable pathophysiologically targeted therapies and prevention

• Enable subgroup assessment of intervention

• Better define gene-gene and gene-environment interactions

• Improve risk stratification

• Understand those who are protected against disease

• Inform development of better in vitro and in vivo models to assess disease and response

Feasibility and challenges of addressing this CQ or CC :

Advances in –omics, diagnostics, cell biology, imaging are ready to be applied

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

30 net votes
42 up votes
12 down votes
Active

Goal 2: Reduce Human Disease

Does lowering circulating lipoprotein(a) levels influence cardiovascular outcomes?

A comprehensive research strategy and plan is needed to determine the most efficient, safe, cost-effective and widely applicable strategy to decrease circulating levels of lipoprotein(a) and to determine whether lowering circulating lipoprotein(a) levels will reduce the risk of developing cardiovascular disease such as a heart attack or a stroke as well as the progression of atherosclerosis or aortic stenosis.

Submitted by (@serevill)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Approximately 20% of the population are characterized by elevated circulating levels of lipoprotein(a), regardless of age, gender or blood cholesterol levels. Estimates suggest that up to 90% of the variation in plasma lipoprotein(a) levels could be due to genetic factors, which makes lipoprotein(a) the most prevalent inherited risk factor for cardiovascular diseases (CVD). Large-scale genetic studies have shown that Lipoprotein(a) was the strongest genetic determinant of CVD such as atherosclerosis and aortic stenosis. Lipoprotein(a) is one of the strongest predictors of residual CVD risk and has been shown to improve CVD risk prediction in several population-based studies. Lipoprotein(a) is also one of the strongest known risk factors for spontaneous ischemic stroke in childhood.

A comprehensive research strategy aiming at identifying, evaluating interaction with other risk factors, treating and educating patients with elevated lipoprotein(a) levels would result in substantial reductions of health care costs in the US and around the globe by reducing the burden of CVD while simultaneously improving the quality of life of these patients.

Feasibility and challenges of addressing this CQ or CC :

The list of pharmaceutical agents that reduce lipoprotein(a) levels is steadily increasing. There are approximately half a dozen strategies that have been shown to significantly and safely lower lipoprotein(a) levels. One of the challenges of this research strategy will be to determine which of these strategies represent the most efficient, safe, cost-effective and widely applicable approach to lower lipoprotein(a) levels and CVD outcomes.

Increasing awareness on lipoprotein(a) and CVD will also be of utmost importance for this effort as relatively few physicians perform lipoprotein(a) testing and even fewer patients are aware of their lipoprotein(a) level. The first sign of high lipoprotein(a) is often a heart attack or stroke. Our challenge will be to identify patients with high lipoprotein(a) that could be enrolled in trials of risk characterization and lipoprotein(a)-lowering.

Name of idea submitter and other team members who worked on this idea : Sandra Revill Tremulis on behalf of the Lipoprotein(a) Foundation Scientific Advisory Board

Voting

235 net votes
297 up votes
62 down votes
Active

Goal 2: Reduce Human Disease

Seeking the secret behind “resilience” to a variety of HLBS diseases

What is the secret behind the “resilience” some people have to heart, lung, blood, and sleep (HLBS) diseases?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

Results of such research should reveal physiological mechanisms of resilience that could be used to develop interventions that would prevent or cure a variety of heart, lung, blood, and sleep diseases.

Feasibility and challenges of addressing this CQ or CC :

Advances in omics, clinical testing

, accumulation of large sets of clinical data and samples

, big data tools

, and increased interest from public (normal volunteers) and patients to participate in large scientific experiments make it feasible.

For instance, these may be healthy people carrying genetic mutations strongly associated with HLBS diseases (or causing rare/familial genetic diseases – these might easier to focus on first), but also people who are not hypertensive, hypercholesterolemic, or diabetic in spite of consistently making bad dietary choices, people who did not develop lung conditions in spite of high pollutant exposure, or are otherwise “protected” from other heart, lung, blood and sleep diseases. This reasoning is not very different from that used to identify ApoA Milano, or even PCSK9 or the “longevity genes”. Such information should reveal physiological mechanisms that could be leveraged to develop interventions to prevent or cure HLBS diseases.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

19 net votes
26 up votes
7 down votes
Active

Goal 2: Reduce Human Disease

Blood specific diseases due to defects in ubiquitous pathways

Why are some blood diseases called by genetic mutations in ubiquitous pathways. Diamond Blackfan anemia is due to a mutation in ribosomal proteins.

Submitted by (@zon000)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

A number of blood diseases are due to signaling defects in ubiquitous pathways. Why would a ribosomal protein mutation lead to a red blood cell specific disorder. Certain anemias or myelodysplastic syndromes are due to mutations in chromatic factors. The chromatin factor defects can lead to clonal hematopoiesis.

Feasibility and challenges of addressing this CQ or CC :

A large scale centralized effort could select projects on blood specific diseases due to defects in ubiquitous pathways. A correlation of gene expression, translation, or transcription could lead to a better understanding of responses of blood cells to the stress of defects in common pathways.

Name of idea submitter and other team members who worked on this idea : Leonard Zon

Voting

2 net votes
9 up votes
7 down votes
Active

Goal 3: Advance Translational Research

Drug Hypersensitivity Databases

As the current chair of the Research and Training Division, I would like to convey that the AAAAI membership would like the NHLBI to consider the following in the development of its strategic plan: Drug Hypersensitivity is a growing concern for patients who are unprotected against potentially severe and lethal reactions. It would be important to generate databases to characterized the different drug reactions, their ...more »

Submitted by (@wheeze)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Name of idea submitter and other team members who worked on this idea : Mitchell Grayson on behalf of the American Academy of Allergy, Asthma, and Immunology

Voting

-7 net votes
11 up votes
18 down votes
Active

Goal 2: Reduce Human Disease

Assessing gene knockout humans more effectively

What insights can be gathered from patients with single gene functional mutations to improve our understanding of the pathobiology of human disease?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

-9 net votes
5 up votes
14 down votes
Active

Goal 2: Reduce Human Disease

Genetic and Molecular Tools for Drug Allergy - Hypersensitivity

As the current chair of the Research and Training Division, I would like to convey that the AAAAI membership would like the NHLBI to consider the following in the development of its strategic plan: Given that more patients are treated with newer and better targeted medications including chemotherapy, monoclonal antibodies, small molecules and others that have increased the number of hypersensitivity reactions, which ...more »

Submitted by (@wheeze)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : Mitchell Grayson on behalf of the American Academy of Allergy, Asthma, and Immunology

Voting

-4 net votes
10 up votes
14 down votes
Active

Goal 2: Reduce Human Disease

Genetic risk factors for sudden cardiac death

What are the genetic risk factors for sudden cardiac death and failure to respond to CPR and defibrillation?

Submitted by (@rebecca.lehotzky)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : AHA Staff & Volunteers

Voting

-2 net votes
2 up votes
4 down votes
Active

Goal 3: Advance Translational Research

Integration of Multiple Omics Data in Chronic Lung Diseases

Integration of multiple Omics data types (genetics, transcriptomics, metabolomics, proteomics, and epigenetics) to understand susceptibility, progression, and heterogeneity of chronic lung diseases.

Submitted by (@jdc000)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

No single Omics data type is likely to adequately describe the pathogenesis and heterogeneity of chronic lung diseases including COPD, asthma, and IPF. However, integration of these data types using systems biology and network approaches could transform the diagnosis, prognosis, and treatment of these chronic lung diseases.

Feasibility and challenges of addressing this CQ or CC :

The availability of multiple Omics data at fairly reasonable costs provides unique opportunities for multiple Omics research.

Name of idea submitter and other team members who worked on this idea : Ed Silverman, James Crapo and the COPDGene Executive Committee

Voting

26 net votes
45 up votes
19 down votes
Active

Goal 3: Advance Translational Research

Use isogenic iPS cells to advance Precision Medicine

The goals of Precision Medicine can be achieved if we determine the biological basis of disease-associated variants for NHLBI diseases. Advances in genetic research have yielded hundreds of disease-associated DNA polymorphisms, yet we lack robust methods to experimentally test their functional relevance in human cells. Determining the molecular and cellular basis of human phenotypic variation is one of the great challenges ...more »

Submitted by (@bconklin)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Identifying how disease mutations result in cellular phenotypes will provide an experimental basis for Precision Medicine. Advances in genome engineering and iPS cell technology now offer a unique opportunity for NHLBI researchers to make a focused effort to produce isogenic disease models, to determining the function of putative disease loci. Just a few years ago, the barriers to this type of project seemed insurmountable, as iPS cells were made with damaging DNA insertions, designer nucleases were difficult to make, complex material-transfer agreements (MTAs) inhibited the open sharing of reagents, and cell-engineering methods were cumbersome. Remarkably, all of these barriers have fallen substantially in recent years, to reveal strategic new opportunities. The phenotypes are determined in isogenic human iPS-models, these observations can be applied to animal models, and human clinical studies.

Feasibility and challenges of addressing this CQ or CC :

Progress towards this goal is being made, but slow pace does not meet opportunity that the NHLBI community has. The NHLBI has a much larger opportunity than other institutes because so many genetic variants have already been determined via excellent genetic studies using robust physiological phenotypes. The genetic variants provide hypotheses that are ripe for direct experimental testing in isogenic iPS cell models. Fortunately, many diseases of interest to NHLBI can be modeled in iPS-derived tissues. Other part of NIH (e.g. NIMH, NIDA, NIAAA ) lack abundance of high probability genetic "hits" that NHLBI now has. NHLBI should take advantage of this opportunity.

Name of idea submitter and other team members who worked on this idea : Bruce Conklin

Voting

-19 net votes
8 up votes
27 down votes
Active