Goal 2: Reduce Human Disease

Can one integrate cardiac imaging studies with genetic,clinical, "omics", and historical data to predict disease and personalize

There are many novel imaging modalities, including radiographic, scintigraphic, sonographic, MR-based, and molecular for the heart and vessels. Patients have unique medical "signatures"- genetic risk factor profiles, epigenetic markings, "omics" profiles, and personal clinical and family history as well as symptom constellation and physical exam findings. Can these all be integrated into a single personalized profile ...more »

Submitted by (@dpinsky)

Voting

1 net vote
2 up votes
1 down votes
Active

Goal 2: Reduce Human Disease

What do we know about Heart Failure with Preserved Ejection Fraction (HFpEF)

Mortality is similar between HFpEF and HFrEF but we have currently no viable therapeutic option for HFpEF. There have been many large trials, but they all failed. Our basic understanding of the disease is very limited which contributed to failures of many prior trials and wasting $$$. We know very little about the pathophysiology of the disease . It is time to get back to the basic science and use our new tools (e.g. ...more »

Submitted by (@rezanezafat)

Voting

6 net votes
17 up votes
11 down votes
Active

Goal 2: Reduce Human Disease

Controversies exist regarding thoracic aortic disease imaging

Controversies exist regarding aortic disease imaging (the aorta as well as the aortic valve, including characterization in the presence of a bicuspid aortic valve (BAV)). Many imaging approaches are optimized for evaluation of coronary artery disease rather than aortic disease. Without accurate characterization, the degree of disease progression may be under estimated, patient symptoms may be discounted, and those who ...more »

Submitted by (@bavtad)

Voting

0 net votes
11 up votes
11 down votes
Active

Goal 3: Advance Translational Research

NHLBI Cardiovascular Engineering Strategy

Most impressive and impactful advances in CV diagnostics and therapies came in the last 50 years from CV engineering, including implantable devices and imaging technology. CV engineers are developing next breakthrough technology including tissue engineering and flexible electronics. However, organizational structure of NIH does not have an entity responsible for strategic development of CV engineering. NIBIB does not ...more »

Submitted by (@efimov)

Voting

8 net votes
17 up votes
9 down votes
Active

Goal 2: Reduce Human Disease

Patient-Specific Blueprints to Guide Cardiac Surgery

In order to increase the success of robotic mitral valve repair, we need to stimulate a fusion of multi-modal functional imaging with 3-D valve models that can accurately predict valve shape and closure throughout the cardiac cycle, then develop surgical “blueprints” that overlay incision and suture maps on the surgeon’s console to guide perioperative robotic repair.

Submitted by (@nhlbiforumadministrator1)

Voting

-19 net votes
6 up votes
25 down votes
Active

Goal 2: Reduce Human Disease

Heart transplant surveillance

It is essential to develop clinically viable, non-invasive, less expensive technologies for the surveillance of allograft rejection in heart transplant patients. Critical challenges that exist in the near term or long term surveillance after transplant is the unavailability of molecular and cellular level markers that can be non-invasively imaged and quantified detect rejection and thus improve patient survival. Development ...more »

Submitted by (@nhlbiforumadministrator)

Voting

1 net vote
14 up votes
13 down votes
Active