Goal 1: Promote Human Health

New technologies for Personalized health monitoring: too much or not enough

The development of personalized medicine and the increasing amount of information extracted from individual and patients throughout their life is expected to growth significantly. Multiple types of physiological sensors are currently embedded in everyday-life objects and yet their clinical value and their potential to improve health care is not well defined. It seems fundamental that the NIH develops a core research group/ ...more »

Submitted by (@heartjpc)

Voting

5 net votes
13 up votes
8 down votes
Active

Goal 3: Advance Translational Research

Study on the Immunologic Effects of ECP (Extracorporeal Photopheresis)

The clinical use of extracorporeal photopheresis (ECP) is expanding. It is known that dendritic cells plays critical role key to its efficacy, but exactly how ECP impacts other immune components and their interactions is not fully understood. There are many unanswered questions such as: “ What are the critical factors in ECP that result in a shift of the dendritic cell population from immune activating to immune tolerant? ...more »

Submitted by (@yanyunw)

Voting

91 net votes
108 up votes
17 down votes
Active

Goal 2: Reduce Human Disease

Influence of the Gut Microbiome on Pulmonary Immunity in HIV-Infected Individuals

It has become increasingly clear that gut microbiota have a tremendous impact on human health and disease. While it is well known that commensal gut bacteria are crucial in maintaining immune homeostasis in the intestine, there is also evidence of indirect effects on the lung. Multiple studies have shown that alterations in gut microbiota can lead to severe defects in pulmonary immune responses and reduced ability to ...more »

Submitted by (@brent.palmer)

Voting

3 net votes
7 up votes
4 down votes
Active

Goal 4: Develop Workforce and Resources

DEVELOPMENT AND SUPPORT FOR APHERESIS MEDICINE INVESTIGATORS

The apheresis medicine encompasses treatment of numerous diseases many of which are directly related to blood, lung and heart. However, there are very limited opportunities for training young investigators in basic and translational research related to Apheresis Medicine. There is a need to promote Apheresis Medicine as a viable field of research for junior and established investigators. The influx of well-trained junior ...more »

Submitted by (@zbigniew.m.szczepiorkowski)

Voting

108 net votes
127 up votes
19 down votes
Active

Goal 2: Reduce Human Disease

Consequences of drug interactions leading to QTc prolongation

Better understand the consequences of drug interactions leading to QTc prolongation. About 1/3 of cardiac ICU patients develop QT prolongation and about 45% receive drugs that are possibly contributing to this problem. The full spectrum of contributors and causes, as well as the patient-centered and health-system-centered clinical outcomes, are not known.

Submitted by (@greg.martin)

Voting

-1 net votes
1 up votes
2 down votes
Active

Goal 2: Reduce Human Disease

DEVELOPMENT OF A PERSONALIZED APPROACH TO SLEEP AND CIRCADIAN DISORDERS

There is developing evidence of major individual differences in pathways to different common sleep disorders such as obstructive sleep apnea. Moreover, there is evidence of different clinical presentations of disease and different outcomes. For example, some subjects with obstructive sleep apnea who get excessive sleepiness while others do not. The latter are still at risk for other consequences of the disorder such ...more »

Submitted by (@jnoel0)

Voting

167 net votes
220 up votes
53 down votes
Active

Goal 3: Advance Translational Research

Use isogenic iPS cells to advance Precision Medicine

The goals of Precision Medicine can be achieved if we determine the biological basis of disease-associated variants for NHLBI diseases. Advances in genetic research have yielded hundreds of disease-associated DNA polymorphisms, yet we lack robust methods to experimentally test their functional relevance in human cells. Determining the molecular and cellular basis of human phenotypic variation is one of the great challenges ...more »

Submitted by (@bconklin)

Voting

-19 net votes
8 up votes
27 down votes
Active

Goal 2: Reduce Human Disease

Study on key product factors for optimal Bone Marrow Transplantation (BMT) graft function

Hematopoietic progenitor cells (HPC) collected by Apheresis is the most common source used for BMT. How the cells are collected and what kinds of cells are collected can affect BMT graft function. Limited studies have been done to study the key product factors in relationship to optimal graft function. Questions remain such as the optimal lymphocytes contents for reduced infection post BMT, optimal megakaryocyte precursor ...more »

Submitted by (@yanyunw)

Voting

70 net votes
93 up votes
23 down votes
Active

Goal 3: Advance Translational Research

Regenerative Medicine 2.0 in Heart and Lung Research - Back to the Drawing Board

Stem cell therapies have been quite successful in hematologic disease but the outcomes of clinical studies using stem cells for cardiopulmonary disease have been rather modest. Explanations for this discrepancy such as the fact that our blood has a high rate of physiologic, endogenous turnover and regeneration whereas these processes occur at far lower rates in the heart and lung. Furthermore, hematopoietic stem cells ...more »

Submitted by (@jalees)

Voting

7 net votes
11 up votes
4 down votes
Active

Goal 2: Reduce Human Disease

Bringing Personalized Biochemistry and Biophysics to Bear on Problems of Personalized Heart, Lung and Blood Medicine

Precision medicine will provide unprecedented opportunities to tailor health care based on knowledge of personal patterns of genetic variations. These variations usually impact protein or RNA sequences, resulting in altered properties. These alterations can result in increased susceptibility to a particular disease or intolerance to common therapeutics. To take full advantage of knowing a patient’s set of gene variations, ...more »

Submitted by (@chuck.sanders)

Voting

-2 net votes
9 up votes
11 down votes
Active