(@jalees)

Goal 2: Reduce Human Disease

Balancing Risks and Benefits: How Do Clinical Guidelines in Cardiovascular Medicine Promote the Health of an Individual?

Much of the hopes for precision medicine (as outlined Dr. Dr. Collins) are based on deriving large amounts of genomic, proteomic, epigenomic and metabolomic data on large cohorts of patients. It will take decades to build these cohorts and even more time to analyze them and derive specific conclusions on how these will help individualize treatments. However, there is a pressing need for how to individualize contemporary ...more »

Voting

1 net vote
1 up votes
0 down votes
Active
(@nhlbiforumadministrator)

Goal 4: Develop Workforce and Resources

Preserving and promoting expertise in integrative physiology

From my perspective, one of the key “critical challenges” facing the NHLBI in particular, and medical science in general, is to avoid being blinded by the promises of the reductionists in the “personalized, precision medicine” of the future. In order to understand the advances being made at the molecular level, we need to preserve and promote expertise in truly integrative physiology, what I like to call “PHYSIOMICS”. ...more »

Voting

6 net votes
16 up votes
10 down votes
Active
(@jalees)

Goal 3: Advance Translational Research

Regenerative Medicine 2.0 in Heart and Lung Research - Back to the Drawing Board

Stem cell therapies have been quite successful in hematologic disease but the outcomes of clinical studies using stem cells for cardiopulmonary disease have been rather modest. Explanations for this discrepancy such as the fact that our blood has a high rate of physiologic, endogenous turnover and regeneration whereas these processes occur at far lower rates in the heart and lung. Furthermore, hematopoietic stem cells ...more »

Voting

7 net votes
11 up votes
4 down votes
Active
(@bconklin)

Goal 3: Advance Translational Research

Use isogenic iPS cells to advance Precision Medicine

The goals of Precision Medicine can be achieved if we determine the biological basis of disease-associated variants for NHLBI diseases. Advances in genetic research have yielded hundreds of disease-associated DNA polymorphisms, yet we lack robust methods to experimentally test their functional relevance in human cells. Determining the molecular and cellular basis of human phenotypic variation is one of the great challenges ...more »

Voting

-19 net votes
8 up votes
27 down votes
Active
(@craighersh)

Goal 2: Reduce Human Disease

Precision medicine in non-malignant lung diseases

NIH has a major initiative in Precision Medicine, including whole genome sequencing. In contrast to cancer, mutations with large clinical effects are expected to be uncommon in most non-malignant chronic diseases, such as asthma and COPD. Other data types such as gene expression, biomarkers, and micro RNAs must be combined with clinical and imaging phenotyping to advance Precision medicine in non-malignant lung diseases. ...more »

Voting

12 net votes
15 up votes
3 down votes
Active
(@greg.martin)

Goal 3: Advance Translational Research

Durable gene activity map at the individual level

A durable gene activity map of the individual to understand when certain gene sets are on vs off or dysfunctional over an individual’s lifetime as one way of guiding the precision of medicine for that patient. It would need to be person portable and universally exportable and interpretable across all of the EHRs.

Voting

2 net votes
3 up votes
1 down votes
Active
(@nhlbiforumadministrator)

Goal 3: Advance Translational Research

Harnessing the ongoing ‘natural experiments’ of quality improvement

How do we harness the ongoing “natural experiments” of quality improvement (QI) activities in various healthcare systems to facilitate hypothesis-driven research, improve scientific validity to address questions in clinical trials, and implement and disseminate research results? • Current restrictions in human subjects research regulations • Diversity in approaches and methodology rigor to QI initiatives across different ...more »

Voting

-2 net votes
11 up votes
13 down votes
Active
(@zbigniew.m.szczepiorkowski)

Goal 4: Develop Workforce and Resources

DEVELOPMENT AND SUPPORT FOR APHERESIS MEDICINE INVESTIGATORS

The apheresis medicine encompasses treatment of numerous diseases many of which are directly related to blood, lung and heart. However, there are very limited opportunities for training young investigators in basic and translational research related to Apheresis Medicine. There is a need to promote Apheresis Medicine as a viable field of research for junior and established investigators. The influx of well-trained junior ...more »

Voting

108 net votes
127 up votes
19 down votes
Active
(@greg.martin)

Goal 1: Promote Human Health

Predictive analytics to engage healthy behaviors and maintain health while reducing cost

Predictive Health employs the principle that using modern health testing and predictive analytics will better define true health (not just absence of disease) and, in combination with large-scale data analytics, will facilitate predicting deviations from the healthy trajectory earlier than traditional disease diagnosis, thus allowing more effective and less costly interventions to maintain health. Predictive Health educates ...more »

Voting

5 net votes
9 up votes
4 down votes
Active
(@rogerjahnke)

Goal 1: Promote Human Health

Qigong and Tai Chi for Chronic Disease Prevention

Non-pharmacological interventions for pain and stress have gained tremendous momentum. Mind-Body Practice -- Qigong and Tai Chi -- are group based and inexpensive to implement. The evidence base suggests that these practices are safe and effective for a multitude of preventable chronic disorders.. THE QUESTION: Given safety and efficacy, should there be vigorous research on implementation of Qigong and Tai Chi and ...more »

Voting

2 net votes
33 up votes
31 down votes
Active
(@zbigniew.m.szczepiorkowski)

Goal 3: Advance Translational Research

TREATMENT OF SEPSIS-MULTIPLE ORGAN DYSFUNCTION SYNDROME (MODS) UTILIZING APHERESIS BASED STRATEGIES

Sepsis, a systemic inflammatory response to infection, is the most common cause of death in non-cardiac intensive care units. The incidence and severity of sepsis have increased over the last two decades. With advances in supportive care, sepsis carries a mortality that averages 17%, however, this figure increases to 50 - 80% in Multiple Organ Dysfunction Syndrome (MODS), defined as failure of 3 or more organ systems. ...more »

Voting

97 net votes
115 up votes
18 down votes
Active