Goal 2: Reduce Human Disease

What is the place of curative therapies in the management of Sickle Cell Disease

Advances in the care of pediatric patients with sickle cell disease ( SCD) have resulted in improved survival to adulthood.However, adulthood is marked by rapid disease progression, impaired quality of life and premature mortality. Hematopoietic cell transplantation(HCT) from matched sibling donor has curative potential, but has been offered mainly to children. Refinements in the conditioning regimen, supportive care, ...more »

Submitted by (@lakshmanankrishnamurti)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

To overcome this obstacle to progress in the field, we propose the creation of the funding mechanisms for a multicenter clinical trial consortium which would bring together investigators in field and facilitate study the outcomes of CT for patients with different types of donors and stem cell sources and compare them to outcomes in phenotypically matched controls receiving best available standard of care.Answering the compelling question about the role of CT in the management of SCD has the potential to have a catalytic effect in progress in this field. Patients are are then more likely to receive CT or standard of care at the appropriate time and in the manner in which they are most likely to have a positive outcome. This has the potential to reduce morbidity and premature mortality and in the long run, to decrease the burden of the disease on the healthcare system. The advent of clinical trials of gene therapies for SCD offers the prospect of even greater applicability of curative therapies. Thus, a consortium developed to answer this CQ would serve as a crucial vehicle for providing access to a greater proportion of patient to these personalized curative therapies . Such studies would also be powered to answer the question about who should receive the curative therapy, when they should receive it, and how it would impact their SCD related complications, late effects, survival and quality of life and help families make informed choice appropriate for their situation.

Feasibility and challenges of addressing this CQ or CC :

The increasing applicability and acceptability of HCT for SCD is evidenced by the doubling in the number of such procedures reported to CIBMTR in the decade starting 2001. Refinements in conditioning regimen and supportive care continue to improve outcomes in children and now in adults with SCD undergoing HCT from HLA matched related donors. Recently, HCT from unrelated donors and from haplo-identical donors have further increased the applicability of HCT. Opening of gene therapy trials has further raised the prospect of cure for a greater proportion of patients. These developments are evidence of the feasibility of recruitment to large multi-center comparative trials of SCD and standard of care. Recently, there has been increasing collaboration among investigators in the field with informal consortia being developed by investigators coming together to study HCT for children, adults or HCT from haplo-identical donors. These groups are also increasingly working with SCD hematologists, families and other stakeholders. There is also increasing cross-cutting collaborations with other medical specialists and behavioral and translational scientists Thus, the convergence of several factors described above suggests that the time is fortuitous for a major initiative from the NHLBI to bring investigators together and create the infrastructure that will enable these investigators to seek definitive answers to the challenging question “What is the place of curative therapy in SCD?”.

Name of idea submitter and other team members who worked on this idea : Lakshmanan Krishnamurti, MD, Allistair Abraham MD, John Horan MD and members of the Sickle cell Transplantation and Research Alliance

Voting

112 net votes
141 up votes
29 down votes
Active

Goal 3: Advance Translational Research

Deriving Cardiac Elements from Pluripotent Human embryonic Stem Cells for Heart Reconstitution

to date, the existing markets lack a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential, which has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged human heart in cardiovascular disease.

Submitted by (@xuejunparsons)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Given the limited capacity of the heart for self-repair or renewal, cell-based therapy represents a promising therapeutic approach closest to provide a cure to restore normal heart tissue and function for CVD. There is no evidence that adult stem/precursor/progenitor cells derived from mature tissues, such as bone marrow, cord blood, umbilical cord, mesenchymal stem cells, patients’ heart tissue, placenta, or fat tissue, are able to give rise to the contractile heart muscle cells following transplantation into the heart. Despite numerous reports about cell populations expressing stem/precursor/progenitor cell markers identified in the adult hearts, the minuscule quantities and growing evidences indicating that they are not genuine heart cells and that they give rise predominantly to non-functional smooth muscle cells rather than functional contractile cardiomyocytes have caused skepticism if they can potentially be harnessed for cardiac repair. In recent years, reprogrammed or trans-differentiated adult cells, as a result of being backed by excess sum of government and private funding, have been rekindled as the adult alternates. However, major drawbacks such as abnormal gene expression, accelerated aging, immune rejection, not graftable, and extremely low efficiencies, have severely impaired the utility of reprogrammed or trans-differentiated somatic cells as viable therapeutic approaches.

Feasibility and challenges of addressing this CQ or CC :

Opportunity: Derivation of pluripotent human embryonic stem cells (hESCs) from the IVF leftover embryos has brought a new era of cellular medicine for the heart. The intrinsic ability of a hESC for both unlimited self-renewal and differentiation into clinically-relevant lineages makes it a practically inexhaustible source of replacement cells for human tissue and function restoration. Therefore, it has been regarded as an ideal source to provide a large supply of functional human cells to heal the damaged or lost tissues that have naturally limited capacity for renewal, such as the human heart and the human brain. Although a vast sum of NHLBI funding has been spent on looking for adult alternates, such as reprogramming and trans-differentiation of fibroblasts or mature tissues, so far, only human cardiac stem/precursor/progenitor cells derived from embryo-originated hESCs have shown such cellular pharmacologic utility and capacity adequate for myocardium regeneration in pharmaceutical development of stem cell therapy for the damaged human heart.

Name of idea submitter and other team members who worked on this idea : Xuejun Parsons

Voting

-33 net votes
10 up votes
43 down votes
Active

Goal 2: Reduce Human Disease

Stem Cell Immunology

We now can create critical cell types like cardiomyocytes etc. from stem cells. Additionally, we are learning the rules of using these cells to rebuild tissues. A major gap in our knowledge relates to the immunobiology of these cells. Lessons from transplantation medicine are only partially applicable, because solid organs are more complex and likely more immunogenic than defined cell populations. How does the immune ...more »

Submitted by (@murry0)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

We now can generate large quantities of critical cell types whose deficiencies underlie many chronic diseases like heart failure. This breakthrough brings us to the next-level impediment: the immune system. While induced pluripotent stem cells have the potential to obviate rejection, in practical terms this is cost-prohibitive: It will cost huge amounts of money to produce and qualify a single patient's cell dose. Moreover, human cardiomyocytes are potent when given to infarcted hearts in the acute or sub-acute phase of infarction, but they have no benefit with chronic heart failure. The 6 months required to produce iPSC-cardiomyocytes precludes their autologous use for myocardial infarction.

 

We need an off the shelf cell therapy product for myocardial infarction that can be mass produced and qualified for large numbers of patients. This means an allogeneic product is necessary. Identifying the immune response to cardiomyocytes or other cell products will teach us how to precisely immunosuppress the patient, thereby minimizing complications, or alternatively, how to engineer the cells so as to avoid immunogenicity in the first place.

 

Lessons from the study of cardiomyocyte transplantation could extend to dopamine neurons, pancreatic beta-cells, retinal cells, myelinating cells and many other areas that cause common chronic disease.

Feasibility and challenges of addressing this CQ or CC :

We know a great deal of transplant immunology from hematopoietic stem cell transplantation (graft versus host) and from solid organ transplantation (host versus graft). There are good mouse and large animal (including non-human primate) models of stem cell differentiation and organ transplantation. This offers low hanging fruit where, in perhaps 5 years, we could discern the critical similarities and differences between transplanting stem cell derivatives and organ or marrow transplantation. These studies will inform clinical trials of allogeneic human stem cell derivatives that will be underway by then.

 

Success in this area will require bringing together researchers interested in stem cell biology and transplant immunology. A properly resourced RFA from NIH could be just the thing needed to promote this interaction.

Name of idea submitter and other team members who worked on this idea : Charles Murry, MD, PhD

Voting

23 net votes
45 up votes
22 down votes
Active

Goal 2: Reduce Human Disease

Lung progenitors and disease

What is the role of lung stem/progenitor cells in disease?

Which diseases involve stem cell defects?

Submitted by (@nhlbiforumadministrator1)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

-4 net votes
13 up votes
17 down votes
Active

Goal 3: Advance Translational Research

Should Allogeneic stem cell transplantation be considered as an upfront treatment in high risk double hit DLBCL?

Double-hit lymphomas (DHL’s) are high-grade B-cell lymphomas characterized by chromosomal rearrangements of MYC gene with BCL2 and less commonly, BCL6.Large analysis of patients with de novo DLBCL have shown that conventional chemotherapy does not improve the survival of DHL Aggressive upfront chemotherapy followed by autologous stem cell transplantation (ASCT) has become a standard treatment in eligible patients. Retrospective ...more »

Submitted by (@shahram.mori.md)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

There are currently no recommendations regarding upfront allogeneic stem cell transplantation of high-risk DHL patients in CR. Harnessing graft versus lymphoma activity may be a potential strategy to improve responses in such patients

Feasibility and challenges of addressing this CQ or CC :

The challenge of this question is the definition of DHL. FISH is commonly used to characterize DHL’s but may miss a significant portion of patients with aggressive disease. Including the cohort DLBCL patients identified by IHC expands the number of patients. Majority of patients with DHL are older but the ability to perform reduced-intensity and haploidentical -transplants will increase the number of eligible patients. The use of post-transplant therapies is needed to keep the lymphoma in check while graft versus lymphoma responses take effect.

Name of idea submitter and other team members who worked on this idea : Shahram Mori

Voting

2 net votes
3 up votes
1 down votes
Active

Goal 3: Advance Translational Research

Regenerative Medicine 2.0 in Heart and Lung Research - Back to the Drawing Board

Stem cell therapies have been quite successful in hematologic disease but the outcomes of clinical studies using stem cells for cardiopulmonary disease have been rather modest. Explanations for this discrepancy such as the fact that our blood has a high rate of physiologic, endogenous turnover and regeneration whereas these processes occur at far lower rates in the heart and lung. Furthermore, hematopoietic stem cells ...more »

Submitted by (@jalees)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Some barriers to successfully implementing cardiopulmonary regeneration include the complex heterogeneous nature of the heart and lung.

 

Hematopoietic stem cells can give rise to all hematopoietic cells but the heart and lung appear to contain numerous pools of distinct regenerative stem and progenitor cells, many of which only regenerate a limited cell type in the respective organ. The approach of injecting one stem cell type that worked so well for hematopoietic stem cells is unlikely to work in the heart and lung.

 

We therefore need new approaches which combine multiple regenerative cell types and pathways in order to successfully repair and regenerate heart and lung tissues. These cell types will likely also require specific matrix cues since there are numerous, heterogeneous microenvironments in the heart and lung.

 

If we rethink our current approaches to regenerating the heart and lung and we use combined approaches in which multiple cell types and microevironments are concomitantly regenerated (ideally by large scale collaborations between laboratories), we are much more likely to achieve success.

 

This will represent a departure from the often practiced "Hey, let us inject our favorite cell" approach that worked so well in hematologic disease but these novel, combined approaches targeting multiple endogenous and/or exogenous regenerative cells could fundamentally change our ability to treat heart and lung disease.

Name of idea submitter and other team members who worked on this idea : Jalees Rehman

Voting

7 net votes
11 up votes
4 down votes
Active

Goal 3: Advance Translational Research

How can we develop more selective immunosuppression for allogeneic hematopoietic cell transplantation?

Graft versus host disease (GVHD) remains the most significant complication of allogeneic hematopoietic stem cell transplantation (HCT). While the use of HCT has grown significantly safer and has demonstrated broad efficacy in the setting of a broad range of blood diseases, immunosuppressive therapy has not dramatically evolved since the introduction of calcineurin inhibitor-based approaches decades ago. The availability ...more »

Submitted by (@kkomanduri)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

GVHD remains a critical problem and major barrier to the more widespread utilization of HCT, especially for nonmalignant diseases, where tolerance of treatment-related mortality is understandably low.

 

There is a compelling need for novel immunosuppressive agents that can effectively limit alloreactivity mediated by donor T and B cells, while relatively sparing pathogen-specific T cells, including those mediating antiviral T cell responses important in the post-HCT interval.

 

In the past decade, drug development has facilitated the introduction into preclinical and clinical trials of a broad range of agents that in addition to targeting pathways of interest in target cells (e.g., aberrant signaling in cancer cells) may also effectively inhibit T and/or B cell responses. Examples include hypomethylating agents (e.g., azacitidine), HDAC inhibitors (e.g., vorinostat), MEK inhibitors (e.g., trametinib) and BTK inhibitors (e.g., ibrutinib). Each of these classes of agents has been demonstrated in preclinical and/or clinical studies to also limit alloreactive T cells, and/or augment regulatory T cell responses, leading to a net reduction of alloreactivity. Unlike traditional agents (e.g., the calcineurin inhibitors) these agents appear to be more selective, and in some cases may have dual benefit in reducing relapse.

 

The NHLBI can facilitate the identification and translation to clinical practice in the setting of HCT trials of novel immunosuppressive agents.

Feasibility and challenges of addressing this CQ or CC :

Research funding targeted to improving the pipeline of novel immunosuppressive agents could have immediate and dramatic impact in the field of HCT, especially impacting its application for nonmalignant diseases. Patients lacking optimal registry donors, especially those from underrepresented minority groups, will particularly benefit from improvements in immunosuppression, as patients receiving less than optimally matched donors are at much higher risk of GVHD.

 

The NHLBI can encourage and facilitate research that tests compounds that have already passed through the drug development process, but in many cases were not intended to function as immunosuppressive agents. Compelling preclinical studies have suggested that targeted inhibition of T and B cells, and/or epigenetic modifiers can lessen alloreactivity while preserving beneficial cellular immune responses and facilitating immune reconstitution.

 

It will be far easier to appropriate therapeutic agents already developed for another purpose than to do novel drug development from scratch. In many cases, preclinical studies have highlighted the therapeutic potential in immunosuppression for agents that have been developed to treat malignancies, but yielded suboptimal success. Research that encourages the development of these drugs as part of a combined immunosuppressive/immunomodulation approach may rescue such compounds, while yielding potential dramatic advances in clinical HCT.

Name of idea submitter and other team members who worked on this idea : Krishna Komanduri, M.D.

Voting

106 net votes
129 up votes
23 down votes
Active

Goal 3: Advance Translational Research

The Designation of Human Cardiac Stem Cell therapy Products for Human Trials or First-in-Human Studies

For successful pharmaceutical development of cardiac stem cell therapy, the human cardiac stem cell therapy product must meet certain commercial criteria in plasticity, specificity, and stability before entry into clinical trials.

Submitted by (@xuejunparsons)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

For successful pharmaceutical development of cardiac stem cell therapy, the human cardiac stem cell therapy product must meet certain commercial criteria in plasticity, specificity, and stability before entry into clinical trials. Moving stem cell research from current studies in animals into human trials must address such practical issues for commercial and therapeutic uses: 1) such human stem cells or their cardiac derivatives must be able to be manufactured in a commercial scale; 2) such human stem cells and their cardiac derivatives must be able to retain their normality or stability for a long term; and 3) such human stem cells must be able to differentiate or generate a sufficient number of functional or contractile cardiomyocytes for repair. Those practical issues are essential for designating any human cardiac stem cells as a human cardiac stem cell therapy product for investigational new drug (IND)-filing and entry into clinical trials. So far, the therapeutic effects, if any, of human cardiac stem cells in the existing market, including those derived from patients’ heart tissues, were mediated by protective or tropic mechanism to rescue dying host cardiomyocytes, but not related to myocardium regeneration.

Feasibility and challenges of addressing this CQ or CC :

Opportunity: Recent breakthrough stem cell technologies have demonstrated the direct pharmacologic utility and capacity of pluripotent human embryonic stem cell (hESC) therapy derivatives for human CNS and myocardium regeneration and, thus, have presented the hESC cell therapy derivatives as a powerful pharmacologic agent of cellular entity for a wide range of CNS and heart diseases. The hESC cardiomyocyte cell therapy derivatives by novel small molecule induction provide a large scale of high quality human cardiomyocyte source for myocardium regeneration and, thus, meet the designation of human stem cell therapy products in plasticity, specificity, and stability for commercial development and human trials or first-in-human studies in cardiovascular diseases.

Name of idea submitter and other team members who worked on this idea : Xuejun Parsons

Voting

-14 net votes
12 up votes
26 down votes
Active

Goal 2: Reduce Human Disease

Can we break the silos at NHLBI? Why are we not working on studiying heart and lung issues in blood cancer survivors?

There is an increasing number of blood cancer survivors in the United States. Many of them have treatment induced heart and lung comorbidities (i.e CHF, pulmonary fibrosis, early aging, etc). However, there does not seem to be a concerted effort by the NHLBI to leverage their relationship with the NCI or the BMT CTN to address this issue. NHLBI should be developing a funding mechanism for cardiopulmonary researchers to ...more »

Submitted by (@giralts)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Would create an infrastructure for cardiopulmonary researchers to work with hematology researchers.

Reduce burden of therapy with curative intent

Develop insight into cardiopulmonary diseases outside of the cancer arenal

Feasibility and challenges of addressing this CQ or CC :

Very feasible with the Blood and Marrow Transplant Clinical Trials Network and the National Clinical Trials Network

Name of idea submitter and other team members who worked on this idea : Sergio Giralt

Voting

66 net votes
96 up votes
30 down votes
Active

Goal 2: Reduce Human Disease

Genetic engineering in lung progenitor cells

Can genome engineering be used to correct or alter lung stem/progenitor cells to ameliorate lung disease and promote regeneration?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

-15 net votes
3 up votes
18 down votes
Active

Goal 2: Reduce Human Disease

Measuring and Improving Physical Fitness to improve outcomes after Hematopoietic Stem Cell Transplantation

Can cardiorespiratory fitness prior to hematopoietic cell transplantation be improved and will this limit morbidity and mortality following transplantation?

Submitted by (@sheat0)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

HCT is associated with high rates of morbidity and mortality from transplant-related complications, the reduction of which would lead to higher transplant-mediated cure rates for life-threatening benign and malignant hematologic disorders. Comorbidity and patient-reported functional status impairment are known to increase the risk for transplant-related mortality, but unlike comorbidity, cardiorespiratory fitness is potentially modifiable. The optimal way to improve fitness through pre-transplant exercise and lifestyle interventions is not known, however, and understanding how to affect through a short term intervention would also benefit other cancer and non-cancer health conditions in which future treatment is intensive and associated with significant risk.

Feasibility and challenges of addressing this CQ or CC :

Feasibility and Challenges of Addressing the CG or CC:

 

Understanding how to improve cardiorespiratory fitness in a short period of time will require a research agenda that addresses the following challenges: how to measure cardiorespiratory fitness in a generalized and scalable way, which may or may not require maximal exercise testing for all participants; how to design intensive exercise interventions that are at least partially home-based in order to minimize resource burden on patients and centers; and how to personalize intervention delivery and testing in a way that is tailored to the baseline fitness levels and capabilities of each participant. Meeting these challenges will enable large-scale, personalized exercise testing and intervention delivery in other non-transplant populations.

Name of idea submitter and other team members who worked on this idea : Thomas Shea and William Wood

Voting

47 net votes
69 up votes
22 down votes
Active

Goal 3: Advance Translational Research

Embedding the future of regenerative medicine into the open epigenomic landscape of pluripotent human embryonic stem cells

Large-scale profiling of developmental regulators and histone modifications by genome-wide approaches have provided powerful genome-wide, high-throughput, and high resolution techniques that lead to great advances in our understanding of the global phenomena of human developmental processes. However, without a practical strategy to convert pluripotent cells direct into a specific lineage, previous studies are limited ...more »

Submitted by (@xuejunparsons)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Large-scale profiling of developmental regulators and histone modifications by genome-wide approaches have provided powerful genome-wide, high-throughput, and high resolution techniques that lead to great advances in our understanding of the global phenomena of human developmental processes. However, without a practical strategy to convert pluripotent cells direct into a specific lineage, previous studies are limited to profiling of pluripotent human embryonic stem cell (hESC) differentiating multi-lineage aggregates, such as embryoid body that contain mixed cell types of endoderm, mesoderm, and ectoderm cells or a heterogeneous population of embryoid body-derived cardiac cells that contain mixed cell types of cardiomyocytes, smooth muscle cells, and endothelial cells. Their findings have been limited to a small group of genes that have been identified previously in non-human systems, and thus, have not uncovered any new regulatory pathways unique to human development. Although genome-wide mapping of histone modifications and chromatin-associated proteins have already begun to reveal the mechanisms in mouse ESC differentiation, similar studies in hESC are currently lacking due to the difficulty of conventional multi-lineage differentiation approaches in obtaining the large number of purified cells, particularly cardiomyocytes, typically required for ChIP-seq experiments.

Feasibility and challenges of addressing this CQ or CC :

Opportunity: Recent technology breakthrough in lineage-specific differentiation of pluripotent hESC by small molecule direct induction allows generation of homogeneous populations of neural or cardiac cells direct from hESC without going through the multi-lineage embryoid body stage. This novel small molecule direct induction approach renders a cascade of neural or cardiac lineage-specific progression directly from the pluripotent state of hESC, providing much-needed in vitro model systems for investigating the genetic and epigenetic programs governing the human embryonic CNS or heart formation. Such in vitro hESC model systems enable direct generation of large numbers of high purity hESC neuronal or cardiomyocyte derivatives required for genome-wide (e.g., ChIP-seq) profiling to reveal the mechanisms responsible for regulating the patterns of gene expression in hESC neuronal or cardiomyocyte specification. It opens the door for further characterizing, identifying, and validating functional elements during human embryonic development in a comprehensive manner. Further using genome-wide approaches to study hESC models of human heart formation will not only provide missing knowledge regarding molecular cardiogenesis in human embryonic development, but also facilitate rapid progress on identification of molecular and genetic therapeutic targets for the prevention and treatment of cardiovascular disease.

Name of idea submitter and other team members who worked on this idea : Xuejun Parsons

Voting

-24 net votes
9 up votes
33 down votes
Active