Goal 1: Promote Human Health

Funding of Stem Cell/Lung Regeneration Research

How to "cure" a chronic, incurable disease - A potential giant step in saving the lives of many thousands of Americans, and potentially millions worldwide, who are afflicted with COPD, the third leading cause of death in the U.S. The financial effect of COPD in the United States alone is well over $50 billion per year. It is estimated that some 30 million Americans have COPD, which of course means that at least that ...more »

Submitted by (@jimandmarynelson)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

COPD is chronic and presently incurable. Although it sickens and disables nearly 30 million Americans, and kills 140,000 of them each year, the only "cure" is a lung transplant. Due to the scarcity of organ donors and the requirements that lungs be removed from the donor in a hospital setting, only about 1,400 lung transplants are performed in the Unites States each year. Unfortunately, transplants are fraught with complications, side effects, and potential rejections, and on the average, add only about 5 years to the life of the recipient. The best potential solution lies with the stem cell and lung regeneration research that is presently occurring at a few centers around the country. Ideally, the re-engineered lungs would be composed of the patient's own stem cells, eliminating a great many of the current transplant issues.

Feasibility and challenges of addressing this CQ or CC :

Research is presently in process on construction or reconstruction of human organs. There has been success in creating some of the simpler organs, such as the esophagus and bladder, and a Medical Center in Galveston has implanted re-engineered lung is a pig. As of my latest conversation with the lead Doctor on the project, results so far are promising.

There is general agreement among the researchers with whom I have communicated that we are between 5 and 20 years away from human trials of re-generated lungs using the patient's own stem cells, but more funding means more research which means more possibilities of the saving of lives.

Name of idea submitter and other team members who worked on this idea : Jim Nelson - COPD Foundation MASAC/CAC/BOARD Committee Member

Voting

25 net votes
32 up votes
7 down votes
Active

Goal 2: Reduce Human Disease

What is the place of curative therapies in the management of Sickle Cell Disease

Advances in the care of pediatric patients with sickle cell disease ( SCD) have resulted in improved survival to adulthood.However, adulthood is marked by rapid disease progression, impaired quality of life and premature mortality. Hematopoietic cell transplantation(HCT) from matched sibling donor has curative potential, but has been offered mainly to children. Refinements in the conditioning regimen, supportive care, ...more »

Submitted by (@lakshmanankrishnamurti)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

To overcome this obstacle to progress in the field, we propose the creation of the funding mechanisms for a multicenter clinical trial consortium which would bring together investigators in field and facilitate study the outcomes of CT for patients with different types of donors and stem cell sources and compare them to outcomes in phenotypically matched controls receiving best available standard of care.Answering the compelling question about the role of CT in the management of SCD has the potential to have a catalytic effect in progress in this field. Patients are are then more likely to receive CT or standard of care at the appropriate time and in the manner in which they are most likely to have a positive outcome. This has the potential to reduce morbidity and premature mortality and in the long run, to decrease the burden of the disease on the healthcare system. The advent of clinical trials of gene therapies for SCD offers the prospect of even greater applicability of curative therapies. Thus, a consortium developed to answer this CQ would serve as a crucial vehicle for providing access to a greater proportion of patient to these personalized curative therapies . Such studies would also be powered to answer the question about who should receive the curative therapy, when they should receive it, and how it would impact their SCD related complications, late effects, survival and quality of life and help families make informed choice appropriate for their situation.

Feasibility and challenges of addressing this CQ or CC :

The increasing applicability and acceptability of HCT for SCD is evidenced by the doubling in the number of such procedures reported to CIBMTR in the decade starting 2001. Refinements in conditioning regimen and supportive care continue to improve outcomes in children and now in adults with SCD undergoing HCT from HLA matched related donors. Recently, HCT from unrelated donors and from haplo-identical donors have further increased the applicability of HCT. Opening of gene therapy trials has further raised the prospect of cure for a greater proportion of patients. These developments are evidence of the feasibility of recruitment to large multi-center comparative trials of SCD and standard of care. Recently, there has been increasing collaboration among investigators in the field with informal consortia being developed by investigators coming together to study HCT for children, adults or HCT from haplo-identical donors. These groups are also increasingly working with SCD hematologists, families and other stakeholders. There is also increasing cross-cutting collaborations with other medical specialists and behavioral and translational scientists Thus, the convergence of several factors described above suggests that the time is fortuitous for a major initiative from the NHLBI to bring investigators together and create the infrastructure that will enable these investigators to seek definitive answers to the challenging question “What is the place of curative therapy in SCD?”.

Name of idea submitter and other team members who worked on this idea : Lakshmanan Krishnamurti, MD, Allistair Abraham MD, John Horan MD and members of the Sickle cell Transplantation and Research Alliance

Voting

112 net votes
141 up votes
29 down votes
Active

Goal 3: Advance Translational Research

Bone Marrow Stem Cell Transplant in Peds sibling matched SCD

There is a need to improve accessibility of Bone Marrow Stem Cell Transplantation (BMSCT) for Sickle Cell Disease patients who are most likely to benefit from this treatment option. 1. Building a culture of trust between and among primary care providers, specialists, patients/families, and other stakeholders 2. Consensus building around BMSCT as an acceptable treatment alternative (as opposed to another research endeavor) ...more »

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

1. It could potentially decrease the prevalence of SCD and significantly decrease the overall morbidity and mortality associated with SCD in children with matched sibling donors.

2. It could increase the awareness of health professionals who have a low awareness of the role of BMSCT in the treatment and cure of SCD (i.e., those in rural areas)

3. It can improve patient/family access to information and communications to facilitate informed discussion and choice for all SCD treatment options

4. It could open the gateway for more therapeutic applications for other genetic diseases

Feasibility and challenges of addressing this CQ or CC :

1. The science in this has evolved substantially such that BMSCT is a viable therapeutic option with reduced morbidity and mortality in the sibling matched population

2. There is an opportunity to broaden current collaborations with other agencies and the BMSCT community to expand the accessibility of their research forward.

3. Other agencies are emphasizing work in the area of BMSCT particularly for hemoglobinopathies.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

52 net votes
80 up votes
28 down votes
Active

Goal 3: Advance Translational Research

Should Allogeneic stem cell transplantation be considered as an upfront treatment in high risk double hit DLBCL?

Double-hit lymphomas (DHL’s) are high-grade B-cell lymphomas characterized by chromosomal rearrangements of MYC gene with BCL2 and less commonly, BCL6.Large analysis of patients with de novo DLBCL have shown that conventional chemotherapy does not improve the survival of DHL Aggressive upfront chemotherapy followed by autologous stem cell transplantation (ASCT) has become a standard treatment in eligible patients. Retrospective ...more »

Submitted by (@shahram.mori.md)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

There are currently no recommendations regarding upfront allogeneic stem cell transplantation of high-risk DHL patients in CR. Harnessing graft versus lymphoma activity may be a potential strategy to improve responses in such patients

Feasibility and challenges of addressing this CQ or CC :

The challenge of this question is the definition of DHL. FISH is commonly used to characterize DHL’s but may miss a significant portion of patients with aggressive disease. Including the cohort DLBCL patients identified by IHC expands the number of patients. Majority of patients with DHL are older but the ability to perform reduced-intensity and haploidentical -transplants will increase the number of eligible patients. The use of post-transplant therapies is needed to keep the lymphoma in check while graft versus lymphoma responses take effect.

Name of idea submitter and other team members who worked on this idea : Shahram Mori

Voting

2 net votes
3 up votes
1 down votes
Active

Goal 2: Reduce Human Disease

The Importance of the Microbiome in Recovery after Hematopoietic Stem Cell Transplantation

Do modifications in the recipient gut or lung microbiome affect development of tolerance and immunologic recovery after allogeneic hematopoietic stem cell transplantation (HCT) and can re-institution of a more normal microbiome lead to improved outcomes?

Submitted by (@marymh)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

HCT leads to profound changes in the host microbiome. Some small studies indicate that differential recovery of the gut microbiome is associated with differential outcomes, including graft-versus-host disease and mortality. Less is known about the pulmonary microbiome. Better understanding of the role of the microbiome in facilitating posttransplant recovery could lead to easily administered interventions and provide important insights into the role of different subpopulations of the microbiome on the health of all people.

Feasibility and challenges of addressing this CQ or CC :

Preclinical and clinical studies of this area would be greatly facilitated by a microbiome repository linked to high quality clinical data and would provide opportunity for insight into the role of the microbiome in health and disease.

Name of idea submitter and other team members who worked on this idea : Mary Horowitz

Voting

117 net votes
152 up votes
35 down votes
Active

Goal 2: Reduce Human Disease

The role of Extracorporeal Photopheresis (ECP) in the prophylaxis and treatment of acute & chronic Graft Versus Host Disease

In Acute Graft Versus Host Disease (aGVHD), we would like to examine whether early and intensified delivery of ECP as part of standard prophylaxis will decrease overall corticosteroid exposure while preserving expected relapse rates in patients undergoing unrelated donor hematopoietic stem cell transplantation (HSCT). Chronic GVHD (cGVHD) is common after HSCT (30-50% recipients) and is a major contributor to late transplant-related ...more »

Submitted by (@js2745)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

Patients who develop aGVHD undergo toxic therapy with high-dose corticosteroids, often for long durations, resulting in high morbidity and treatment related mortality. Alternatively, T cell depletion of the donor graft to reduce GVHD is associated with high rates of infection and relapse of the disease that led to the HSCT. Targeting other pathways of GVHD pathogenesis may preserve the beneficial immune reconstitution and graft-versus-tumor (GVT) effects, while ameliorating the severity of GVHD. One such pathway involves regulatory T cells (T regs), which inhibit T cell alloreactivity, and are correlated with the incidence and severity of GVHD without loss of GVT. To date, there is no consensus on a standard second-line therapy for aGVHD, and current approaches focus mainly on intensification of immunosuppression. Addressing this compelling question will help to decrease overall corticosteroid exposure while preserving the expected relapse rates in patients undergoing unrelated donor HSCT.

 

Appropriate initial therapy for cGVHD involves high doses & prolonged use (yrs) of corticosteroids, while patients still develop irreversible sclerotic manifestations of disease. Early intervention prior to disease onset may help prevent cGVHD development or lessen its severity, requiring less corticosteroid exposure. Addressing the compelling question for cGVHD will help decrease exposure to drugs with associated morbidity, while preserving expected relapse rates in these patients.

Feasibility and challenges of addressing this CQ or CC :

Feasibility:

 

* GVHD has relatively high incidence after HSCT and at the same time there is a lack of consensus on standard second line therapy for the disease. Thus, there will be increased interest in developing and participation in those studies.

 

** ECP is generally well tolerated and complications are infrequent.

 

*** There is a great potential for multi-discipline collaboration approach in this patients’ population.

 

*** There is an opportunity to engage industry partners in the design and support for these studies.

 

**** There are numerous scientific opportunities for meritorious science as there have been limited systematic studies of ECP mechanisms of as well as standardization of apheresis protocols based on GVHD disease state.

 

 

 

Challenges:

 

* Limited number of institutions providing ECP treatment.

 

** Cost of the procedures (although Centers for Medicare and Medicaid Services now covers ECP for cGVHD).

 

*** There is a very limited number of animal models available for apheresis research in general, and studies of the mechanism(s) of action of photopheresis have been very limited as well as difficult and expensive to perform. However understanding pathological mechanisms and its relationship to response to apheresis is critical for optimization and advancement of patient care.

 

****Lack of infra-structure for apheresis research.

Name of idea submitter and other team members who worked on this idea : Joseph Schwartz on behalf of ASFA

Voting

103 net votes
126 up votes
23 down votes
Active

Goal 3: Advance Translational Research

Regenerative Medicine 2.0 in Heart and Lung Research - Back to the Drawing Board

Stem cell therapies have been quite successful in hematologic disease but the outcomes of clinical studies using stem cells for cardiopulmonary disease have been rather modest. Explanations for this discrepancy such as the fact that our blood has a high rate of physiologic, endogenous turnover and regeneration whereas these processes occur at far lower rates in the heart and lung. Furthermore, hematopoietic stem cells ...more »

Submitted by (@jalees)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Some barriers to successfully implementing cardiopulmonary regeneration include the complex heterogeneous nature of the heart and lung.

 

Hematopoietic stem cells can give rise to all hematopoietic cells but the heart and lung appear to contain numerous pools of distinct regenerative stem and progenitor cells, many of which only regenerate a limited cell type in the respective organ. The approach of injecting one stem cell type that worked so well for hematopoietic stem cells is unlikely to work in the heart and lung.

 

We therefore need new approaches which combine multiple regenerative cell types and pathways in order to successfully repair and regenerate heart and lung tissues. These cell types will likely also require specific matrix cues since there are numerous, heterogeneous microenvironments in the heart and lung.

 

If we rethink our current approaches to regenerating the heart and lung and we use combined approaches in which multiple cell types and microevironments are concomitantly regenerated (ideally by large scale collaborations between laboratories), we are much more likely to achieve success.

 

This will represent a departure from the often practiced "Hey, let us inject our favorite cell" approach that worked so well in hematologic disease but these novel, combined approaches targeting multiple endogenous and/or exogenous regenerative cells could fundamentally change our ability to treat heart and lung disease.

Name of idea submitter and other team members who worked on this idea : Jalees Rehman

Voting

7 net votes
11 up votes
4 down votes
Active

Goal 2: Reduce Human Disease

Genetic engineering in lung progenitor cells

Can genome engineering be used to correct or alter lung stem/progenitor cells to ameliorate lung disease and promote regeneration?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

-15 net votes
3 up votes
18 down votes
Active

Goal 3: Advance Translational Research

Increasing Regenerative Medical Strategies in Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is a complex, progressive condition characterized by high blood pressure in the lungs and restriction of flow through the pulmonary arterial system. Current PAH therapies mainly act of the vasoconstrictive component of the disease; however there is a widely accepted view that another contributor to the disease is an abnormal overgrowth of cells that line the pulmonary arteries, which ...more »

Submitted by (@michaelg)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

In the past twenty years, 12 PAH targeted-therapies have been approved by the FDA. This increase in disease state awareness and in the treatment armamentarium have contributed to an increase in average survival from 2.8 years to an estimated 8-10 years. However, current treatments primarily address the vasoconstrictive component of the disease and do not address the now accepted theory of post-apoptotic overgrowth of hyperproliferative cells of the pulmonary vessels. A number of circulating stem and progenitor cells, derived from the bone marrow, have been identified that could have roles in repair of the pulmonary vascular system when interacting with the quickly, abnormally growing cells in the lung vessels. Work in this area has been named as a future research opportunity in the NHLBI-ORDR Strategic Plan for Lung Vascular Research (Erzurum S, et al. 2010).

Feasibility and challenges of addressing this CQ or CC :

Basic and translational research support is needed—including high-throughput approaches such as phage display and large-scale proteomic analysis—to better understand the relationship between circulating bone marrow-derived cells, lung-resident stem and progenitor cells, and endothelial cells of the pulmonary arterial system.

Name of idea submitter and other team members who worked on this idea : Pulmonary Hyeprtension Association, Michael Gray, Katie Kroner

Voting

71 net votes
81 up votes
10 down votes
Active

Goal 3: Advance Translational Research

Embedding the future of regenerative medicine into the open epigenomic landscape of pluripotent human embryonic stem cells

Large-scale profiling of developmental regulators and histone modifications by genome-wide approaches have provided powerful genome-wide, high-throughput, and high resolution techniques that lead to great advances in our understanding of the global phenomena of human developmental processes. However, without a practical strategy to convert pluripotent cells direct into a specific lineage, previous studies are limited ...more »

Submitted by (@xuejunparsons)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Large-scale profiling of developmental regulators and histone modifications by genome-wide approaches have provided powerful genome-wide, high-throughput, and high resolution techniques that lead to great advances in our understanding of the global phenomena of human developmental processes. However, without a practical strategy to convert pluripotent cells direct into a specific lineage, previous studies are limited to profiling of pluripotent human embryonic stem cell (hESC) differentiating multi-lineage aggregates, such as embryoid body that contain mixed cell types of endoderm, mesoderm, and ectoderm cells or a heterogeneous population of embryoid body-derived cardiac cells that contain mixed cell types of cardiomyocytes, smooth muscle cells, and endothelial cells. Their findings have been limited to a small group of genes that have been identified previously in non-human systems, and thus, have not uncovered any new regulatory pathways unique to human development. Although genome-wide mapping of histone modifications and chromatin-associated proteins have already begun to reveal the mechanisms in mouse ESC differentiation, similar studies in hESC are currently lacking due to the difficulty of conventional multi-lineage differentiation approaches in obtaining the large number of purified cells, particularly cardiomyocytes, typically required for ChIP-seq experiments.

Feasibility and challenges of addressing this CQ or CC :

Opportunity: Recent technology breakthrough in lineage-specific differentiation of pluripotent hESC by small molecule direct induction allows generation of homogeneous populations of neural or cardiac cells direct from hESC without going through the multi-lineage embryoid body stage. This novel small molecule direct induction approach renders a cascade of neural or cardiac lineage-specific progression directly from the pluripotent state of hESC, providing much-needed in vitro model systems for investigating the genetic and epigenetic programs governing the human embryonic CNS or heart formation. Such in vitro hESC model systems enable direct generation of large numbers of high purity hESC neuronal or cardiomyocyte derivatives required for genome-wide (e.g., ChIP-seq) profiling to reveal the mechanisms responsible for regulating the patterns of gene expression in hESC neuronal or cardiomyocyte specification. It opens the door for further characterizing, identifying, and validating functional elements during human embryonic development in a comprehensive manner. Further using genome-wide approaches to study hESC models of human heart formation will not only provide missing knowledge regarding molecular cardiogenesis in human embryonic development, but also facilitate rapid progress on identification of molecular and genetic therapeutic targets for the prevention and treatment of cardiovascular disease.

Name of idea submitter and other team members who worked on this idea : Xuejun Parsons

Voting

-24 net votes
9 up votes
33 down votes
Active

Goal 2: Reduce Human Disease

Transplantation across HLA barriers in aplastic anemia

Allogeneic stem cell transplantation is curative in aplastic anemia with much less intrinsic toxicity than transplantation in hematologic malignancies. The recent BMT-CTN trial demonstrated 97% survival at one year with little subsequent decline. However patients without matched related or unrelated donors have graft-rejection rates of up to 50%. Preliminary data from the Netherlands suggests that anti-thymocyte globulin ...more »

Submitted by (@jantin)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

The use of umbilical cord blood or haploidentical donors has proven effective in patients with hematologic malignancies, but in non-malignant disorders outcomes are limited by graft rejection. Overcoming rejection in this context would be applicable to other non-malignant disorders such as thalassemia, sickle cell anemia, and other congenital disorders of hematopoiesis.

Feasibility and challenges of addressing this CQ or CC :

It will require a large coordinated network like BMT-CTN to obtain sufficient patients studied in a uniform fashion to provide consistent reproducible data. .

Name of idea submitter and other team members who worked on this idea : Joseph Antin

Voting

110 net votes
137 up votes
27 down votes
Active

Goal 2: Reduce Human Disease

Engineered ECM for heart repair

Utilizing advances in nano, bio, tissue and related engineering technologies to construct cardiac ECM for heart repair.

Submitted by (@nhlbiforumadministrator1)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Will advance cell and gene based therapeutics for cardiac repair. Despite promise, efficacy of cell based therapies remains largely unproven and this may in part be due to poor understanding of cell-ECM interactions. Research efforts in engineering cardiac ECM have the potential to greatly advance such therapeutic approaches.

Feasibility and challenges of addressing this CQ or CC :

This research field is ripe for experimentation and testing.

A major thrust of recent efforts in repairing cardiac injury has focused on cell therapies. However, since the ECM provides the necessary scaffold for the cells it is important to consider the cell-ECM interactions when utilizing these approaches.

 

Will require multi-disciplinary expertise.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

3 net votes
19 up votes
16 down votes
Active