Goal 2: Reduce Human Disease

Pulmonary Vascular Diseases

Does anticoagulation with warfarin improve outcomes (time to clinical worsening, qualtiy of life, exercise capacity) in patients with pulmonary arterial hypertension treated with current oral/inhaled therapies? There are substantial "unknowns" and practice variation in anticoagulation in PAH. Resource utilization is also a factor here. We may either be helping patients (or hurting them with side effects) by using anticoagulation. ...more »

Submitted by (@nhlbiforumadministrator)

Voting

2 net votes
2 up votes
0 down votes
Active

Goal 3: Advance Translational Research

Animal models of vascular diseases

How can we better model human vascular disease in all its complexity?

­This is key to more effective translation of both diagnostics and therapeutics. Develop improved animal models of vascular diseases including PAD, aneurysm, venous diseases, to facilitate fundamental research and preclinical development.

Submitted by (@societyforvascularsurgery)

Voting

2 net votes
3 up votes
1 down votes
Active

Goal 2: Reduce Human Disease

Vascular biology and the pathophysiology of sepsis

Unravel the cellular & molecular mechanisms related to the vascular biology of sepsis and related cardiovascular collapse. The goal is to develop a new scientific framework for the prevention of sepsis related morbidity and mortality by applying novel approaches to discover new targets for biomarkers and therapy by promoting multidisciplinary research required for scientific cross-talk between complementary research disciplines ...more »

Submitted by (@greg.martin)

Voting

4 net votes
8 up votes
4 down votes
Active

Goal 2: Reduce Human Disease

Novel methods to diagnose and treat microvascular ischemia

Microvascular ischemia is common, particularly in the setting of critical illness. We need better ways to evaluate, diagnose and treat these conditions, whether they relate to microvascular myocardial ischemia, as a primary diagnosis of complication of other acute illness, or non-myocardial ischemia during the course of surgery, injury, infection or acute illness.

Submitted by (@greg.martin)

Voting

0 net votes
2 up votes
2 down votes
Active

Goal 4: Develop Workforce and Resources

Develop Vascular Anomalies Medical Training and Research Programs

Patients with vascular anomalies frequently see many physicians and undergo extraneous tests with incorrect diagnoses. A major reason for this is due to the fact that medical training does not include Vascular Anomalies in the syllabus. Thus, many specialties erroneously use the term "hemangioma" for any vascular diagnosis. Over the past 2 decades, there have been major breakthroughs in basic and genetic research, as ...more »

Submitted by (@fblei0)

Voting

-1 net votes
7 up votes
8 down votes
Active

Goal 1: Promote Human Health

Mechanisms of Vascular Stiffness

Increased vascular stiffness has been identified as an important cardiovascular event that accompanies aging and cardiovascular disease. Although multiple vascular changes have been identified and suggested to cause increased vascular stiffness, our understanding of the underlying mechanisms needs to be refined in order to develop useful therapeutic strategies to prevent or reverse these changes. An example of critical ...more »

Submitted by (@meiningerg)

Voting

55 net votes
88 up votes
33 down votes
Active

Goal 4: Develop Workforce and Resources

Establishment of an independent study section on Pulmonary Vascular Biology and Translational Research

The research on pulmonary vascular biology including smooth muscle cell biology and endothelial cell biology and related pulmonary vascular diseases such as pulmonary hypertension and related right heart failure, and endothelial dysfunction in lung vascular inflammation and acute lung injury, as well as pulmonary embolism and lung transplantation has been rapidly expanding. The field is attracting an ever increasing ...more »

Submitted by (@yyzhao)

Voting

23 net votes
50 up votes
27 down votes
Active