(@murry0)

Goal 2: Reduce Human Disease

Stem Cell Immunology

We now can create critical cell types like cardiomyocytes etc. from stem cells. Additionally, we are learning the rules of using these cells to rebuild tissues. A major gap in our knowledge relates to the immunobiology of these cells. Lessons from transplantation medicine are only partially applicable, because solid organs are more complex and likely more immunogenic than defined cell populations. How does the immune ...more »

Voting

23 net votes
45 up votes
22 down votes
Active
(@nhlbiforumadministrator1)

Goal 1: Promote Human Health

The coupling of mechanical stress to biochemistry, molecular biology and electrophysiology

Cells aren’t beakers holding soluble reactants waiting to be mixed. Cells are structured objects where life forms as a flow of free energy between three pools: chemical, electrical and mechanical. Most papers in the literature ignore structure (except of Xray or EM of specific proteins) and almost all ignore the coupling of mechanics to the other pools. Cells cannot be studied with in vitro experiments. We can study single ...more »

Voting

9 net votes
29 up votes
20 down votes
Active
(@meiningerg)

Goal 1: Promote Human Health

Mechanisms of Vascular Stiffness

Increased vascular stiffness has been identified as an important cardiovascular event that accompanies aging and cardiovascular disease. Although multiple vascular changes have been identified and suggested to cause increased vascular stiffness, our understanding of the underlying mechanisms needs to be refined in order to develop useful therapeutic strategies to prevent or reverse these changes. An example of critical ...more »

Voting

55 net votes
88 up votes
33 down votes
Active