Goal 3: Advance Translational Research

Develop Targeted Therapeutics to Treat Venous Thrombosis and Inflammation in Venous Thromboembolism

Venous Thromboembolism (VTE) afflicts nearly a million Americans yearly, has a mortality of 6-12% and has costs of more than $15 billion. Current treatment regimens, systemic anticoagulation and compression stockings, fail patients in multiple ways: risk of major bleeding episodes; failure of clot resolution in up to 50% of patients; failure to prevent the development of post-thrombotic syndrome (PTS) in up to 40% of ...more »

Submitted by (@chanduvem)

Voting

4 net votes
6 up votes
2 down votes
Active

Goal 3: Advance Translational Research

Direct Upregulation of Antioxidant Defenses as a Therapeutic Strategy

Clinical trials involving administration of antioxidants such as vitamin C or vitamin E as therapeutic strategies for cardiovascular diseases associated with oxidant stress have proven to be surprisingly disappointing. A particularly attractive alternative approach is direct upregulation of endogenous antioxidant defenses such as NRF2 via dietary approaches. NRF2 is a master antioxidant and cell protective transcription ...more »

Submitted by (@jlombard)

Voting

-5 net votes
2 up votes
7 down votes
Active

Goal 2: Reduce Human Disease

The Use of Therapeutic Apheresis to Reduce Circulating Levels of Galectin-3 and other Cancer and Inflammation Promoting Factors

Inflammation plays roles in cancer initiation, promotion, and progression. Elevated circulating galectin-3 (Gal-3) protein and other cancer and inflammation promoting factors (CIPFs) such as C-reactive protein and VEGF are associated with tumorigenesis and may play causative roles. Plasma Gal-3 is a biomarker, prognosticator, and pathogenic mediator of diverse cancers and is emerging as a therapeutic target. Preliminary ...more »

Submitted by (@elaine)

Voting

33 net votes
40 up votes
7 down votes
Active

Goal 1: Promote Human Health

Role of non-coding RNAs in cardiovascular biology and disease

Noncoding RNAs field is still in its infancy. It includes microRNA and long-non-coding RNA. Recent studies show that Non-coding RNA play important roles in the regulation of tissue homeostasis and pathophysiological conditions. miRNA-based therapeutics showed promising results in numerous animal models of heart failure, cardiac hypertrophy, fibrosis and hyperlipidaemias, and showed success in in-human clinical trial ...more »

Submitted by (@totaryjainh)

Voting

5 net votes
10 up votes
5 down votes
Active

Goal 1: Promote Human Health

Combinatorial intervention of immune dynamics to combat cariovascular disease

Human health and disease are modulated by complex and inter-connected dynamic processes. With particular significance, a well-balanced immune environment may play a key role in maintaining health and preventing the pathogenesis of cardiovascular disease. Defining the dynamic programming and balance of immune environment will be the key for combinatorial therapies to reset homeostasis.

Submitted by (@lwli00)

Voting

8 net votes
10 up votes
2 down votes
Active

Goal 3: Advance Translational Research

Maximizing anti-tumor immunity following allogeneic HCT with biomarkers

Allogeneic hematopoietic cell transplantation (allo-HCT) is one of the most effective forms of tumor immunotherapy available to date. Allo-HCT can be life-saving for patients with aggressive malignancies that cannot be cured through other strategies. The immunotherapeutic efficacy of allo-HCT depends on donor T cell recognition of alloantigens on leukemic cells, which is known as the graft-versus-tumor effect (GVT). No ...more »

Submitted by (@sophpacz)

Voting

32 net votes
52 up votes
20 down votes
Active

Goal 2: Reduce Human Disease

How can we more safely deliver stem cells to Sickle Cell patients

Newer therapies using gene correction, rather than gene addition, are needed for sickle cell disease. Even with this potential advantage, there needs to be a way to safely deliver gene corrected HSC to the sickle cell patient. Chemotherapy is poorly tolerated, and often is the reason patients do not choose the BMT option. What is the status of other less toxic non myeloablative approaches, and how can they best be ...more »

Submitted by (@freddigoldman)

Voting

51 net votes
67 up votes
16 down votes
Active