Goal 3: Advance Translational Research

Can hair follicle stem cells be transformed into new cells or organs?

Dr. Cotsarelis of the Univ. of Pennsylvania identified the bulge area of the hair follicle, which is now thought to contain the hair's stem cells. These cells would seem to be readily available and unique to an individual person. Can further work be done to transform these cells into now only hair cells but other organ tissues?

Submitted by (@info00)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Voting

-15 net votes
5 up votes
20 down votes
Active

Goal 2: Reduce Human Disease

Influence of the Gut Microbiome on Pulmonary Immunity in HIV-Infected Individuals

It has become increasingly clear that gut microbiota have a tremendous impact on human health and disease. While it is well known that commensal gut bacteria are crucial in maintaining immune homeostasis in the intestine, there is also evidence of indirect effects on the lung. Multiple studies have shown that alterations in gut microbiota can lead to severe defects in pulmonary immune responses and reduced ability to ...more »

Submitted by (@brent.palmer)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

HIV-infected individuals are at significant risk of developing and dying from infectious and non-infectious pulmonary complications. Alteration of gut microbiota have been shown to have dramatic effects on pulmonary immunity and severity of lung infections. For instance, multiple studies have indicated that probiotic treatment with certain Lactobacillus and Bifidobacterium strains results in reduced incidence and severity of upper respiratory tract infections in children. Similarly, a recent study showed that treatment with the minimally absorbed antibiotic neomycin was associated with alterations in gut microbiota composition and concomitant reduced pulmonary immunity and the inability to control Influenza infection in mice. It was recently described that HIV infection is associated with a dramatic alteration in gut microbiota and that these changes persist with antiretroviral therapy (ART). Thus, it is important to understand how these alterations may effect lung immunity, since the majority of HIV-infected individuals develop pulmonary infections. Furthermore, gut microbiota contribute to development of non-infectious complications such as atherosclerosis, metabolic disease, obesity and diabetes. It is thus highly plausible that the gut microbiota may also play a role in the development of non-infectious complications of the lung such as Chronic Obstructive Pulmonary Disease and Pulmonary Hypertension, the rates of which are elevated in HIV-infected individuals.

Feasibility and challenges of addressing this CQ or CC :

A better understanding of how alterations in gut microbiota associated with HIV infection affects pulmonary infectious and noninfectious complication could lead to therapies to protect this “at risk” group. Furthermore, manipulation of the gut microbiota in HIV-infected individuals using pro- and/or pre-biotics, antibiotics or diet modification to a composition that is associated with increased pulmonary immunity, reduced infections and lung complications are all low risk therapeutic strategies that could substantially improve lung heath in these individuals.

Name of idea submitter and other team members who worked on this idea : Brent Palmer (NHLBI-INHALD group member) and Catherine Lozupone

Voting

3 net votes
7 up votes
4 down votes
Active

Goal 1: Promote Human Health

How do Circulating Precursor Endothelial Cells contribute to newly formed vessels

Endothelial cells derive from cells in the bone marrow. Circulating precursor endothelial cells contribute to newly forming vessels.

Do Alk 1 and/or Endogln mutations affect the functions of these cells once they incorporate into growing vessels. These vessels then go on to form arteriovenous malformations

Submitted by (@mariannes.clancy)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : Marianne Clancy MPA, Chris Hughes PhD

Voting

2 net votes
2 up votes
0 down votes
Active

Goal 1: Promote Human Health

Funding of Stem Cell/Lung Regeneration Research

How to "cure" a chronic, incurable disease - A potential giant step in saving the lives of many thousands of Americans, and potentially millions worldwide, who are afflicted with COPD, the third leading cause of death in the U.S. The financial effect of COPD in the United States alone is well over $50 billion per year. It is estimated that some 30 million Americans have COPD, which of course means that at least that ...more »

Submitted by (@jimandmarynelson)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

COPD is chronic and presently incurable. Although it sickens and disables nearly 30 million Americans, and kills 140,000 of them each year, the only "cure" is a lung transplant. Due to the scarcity of organ donors and the requirements that lungs be removed from the donor in a hospital setting, only about 1,400 lung transplants are performed in the Unites States each year. Unfortunately, transplants are fraught with complications, side effects, and potential rejections, and on the average, add only about 5 years to the life of the recipient. The best potential solution lies with the stem cell and lung regeneration research that is presently occurring at a few centers around the country. Ideally, the re-engineered lungs would be composed of the patient's own stem cells, eliminating a great many of the current transplant issues.

Feasibility and challenges of addressing this CQ or CC :

Research is presently in process on construction or reconstruction of human organs. There has been success in creating some of the simpler organs, such as the esophagus and bladder, and a Medical Center in Galveston has implanted re-engineered lung is a pig. As of my latest conversation with the lead Doctor on the project, results so far are promising.

There is general agreement among the researchers with whom I have communicated that we are between 5 and 20 years away from human trials of re-generated lungs using the patient's own stem cells, but more funding means more research which means more possibilities of the saving of lives.

Name of idea submitter and other team members who worked on this idea : Jim Nelson - COPD Foundation MASAC/CAC/BOARD Committee Member

Voting

25 net votes
32 up votes
7 down votes
Active

Goal 3: Advance Translational Research

Regenerative Medicine 2.0 in Heart and Lung Research - Back to the Drawing Board

Stem cell therapies have been quite successful in hematologic disease but the outcomes of clinical studies using stem cells for cardiopulmonary disease have been rather modest. Explanations for this discrepancy such as the fact that our blood has a high rate of physiologic, endogenous turnover and regeneration whereas these processes occur at far lower rates in the heart and lung. Furthermore, hematopoietic stem cells ...more »

Submitted by (@jalees)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Some barriers to successfully implementing cardiopulmonary regeneration include the complex heterogeneous nature of the heart and lung.

 

Hematopoietic stem cells can give rise to all hematopoietic cells but the heart and lung appear to contain numerous pools of distinct regenerative stem and progenitor cells, many of which only regenerate a limited cell type in the respective organ. The approach of injecting one stem cell type that worked so well for hematopoietic stem cells is unlikely to work in the heart and lung.

 

We therefore need new approaches which combine multiple regenerative cell types and pathways in order to successfully repair and regenerate heart and lung tissues. These cell types will likely also require specific matrix cues since there are numerous, heterogeneous microenvironments in the heart and lung.

 

If we rethink our current approaches to regenerating the heart and lung and we use combined approaches in which multiple cell types and microevironments are concomitantly regenerated (ideally by large scale collaborations between laboratories), we are much more likely to achieve success.

 

This will represent a departure from the often practiced "Hey, let us inject our favorite cell" approach that worked so well in hematologic disease but these novel, combined approaches targeting multiple endogenous and/or exogenous regenerative cells could fundamentally change our ability to treat heart and lung disease.

Name of idea submitter and other team members who worked on this idea : Jalees Rehman

Voting

7 net votes
11 up votes
4 down votes
Active

Goal 2: Reduce Human Disease

Genetic engineering in lung progenitor cells

Can genome engineering be used to correct or alter lung stem/progenitor cells to ameliorate lung disease and promote regeneration?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

-15 net votes
3 up votes
18 down votes
Active

Goal 2: Reduce Human Disease

The role of Extracorporeal Photopheresis (ECP) in the prevention and treatment of rejection of heart and lung transplants

According to the ISHLT, more than 4,000 patients undergo a heart transplant each year, and almost 4,000 receive single or double lung transplants. Their prognosis depends heavily on the avoidance of rejection, which claims the majority of their lives. For heart transplant recipients, the median survival is 11 years, while for lung transplant recipients, it is approximately 5 years. The current most common anti-rejection ...more »

Submitted by (@mmarques)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

Patients who are fortunate to receive a matched heart or one or two lungs transplants are at high risk of dying from rejection early and even years after the operation. Thus, they are given cocktails of highly toxic anti-rejection drugs for the rest of their lives. Unfortunately, despite compliance with their drug regimens, many patients still suffer repeated episodes of rejection that may be fatal. In addition, they develop serious side-effects such as diabetes, infections, malignancies, renal failure, etc. ECP has been shown efficacy in preventing and treating cardiac transplant rejection, but the data are limited. ECP appears to benefit such patients by causing an increase in the number of circulating T regulatory (“T regs”) cells. T regs are known to mediate immune tolerance, the ultimate goal of a long-term successful transplant. The role of ECP in lung transplantation is mostly unknown. Very preliminary data have been gathered from retrospective studies. We suspect that patients with early bronchiolitis obliterans syndrome (“BOS”) will benefit from ECP prior to developing irreversible pulmonary damage. In both types of transplants, however, it is unknown when should ECP be started, how often it should be employed (treatment schedule), and for how long. Finally, the most compelling argument to use ECP in heart and lung transplantation is its excellent side-effect profile. Furthermore, ECP may allow a decrease in the number of drugs needed to prevent rejection.

Feasibility and challenges of addressing this CQ or CC :

Many patients with heart and lung transplants develop severe and often fatal rejection despite the current drug options to prevent rejection. ECP could be added to their treatment regimens and decrease side-effects, improving long-term survival.

 

ECP is generally well tolerated and complications are extremely infrequent.

 

There is a great potential for multi-disciplinary collaboration between Apheresis Medicine, Cardiology, and Pulmonary specialists.

 

It is conceivable that manufacturers of ECP instruments will be interested in contributing to the design and support of these studies.

 

Such studies could shed light in the mechanism of action of ECP in heart and lung transplantation.

 

There is a need to develop standardized treatment regimens based on well designed clinical trials to further optimize the use of ECP. Development and standardization of measurable outcomes is critical for the success of clinical studies in apheresis in general, and ECP in particular.

 

Challenges:

1. Limited number of institutions providing ECP treatment.

2. Cost of ECP procedures.

3. Small number of animal models available for apheresis research. Thus, limited studies of ECP mechanism(s) of action. However, understanding pathological mechanisms and their relationship to response to apheresis is critical for optimization and advancement of patient care in heart and lung transplantation.

4. Lack of infra-structure for apheresis research.

Name of idea submitter and other team members who worked on this idea : Marisa Marques on behalf of ASFA

Voting

80 net votes
102 up votes
22 down votes
Active

Goal 2: Reduce Human Disease

Mitigating risks due to the RBC storage lesion and vulnerable patients

What are the underlying dependencies (genomic, metabolic, disease) in individual donors that either accelerate or delay the changes to red blood cells during refrigerated storage? What methods of preparation might protect patients from the risks posed by the accelerated degradation of RBCs provided by "poor storers"? What characteristics of individual patients make them particularly vulnerable to transfusion of red ...more »

Submitted by (@andrew.dunham)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

The changes in red blood cells during refrigerated storage have been well documented and associated with negative clinical sequelae in the peer reviewed literature. While the impact of this so-called storage lesion does not impact every patient during every transfusion it is reasonable to expect that when a unit of blood is transfused to a particularly vulnerable patient from a donor that has red blood cells pre-disposed to degradation, stored in a manner that has allowed significant change to occur, the risk of a negative clinical sequelae is increased. In this case it will be important to understand what underlies the likelihood of a donors blood to store poorly, the changes that occur during storage that could impact vulnerable patients and design approaches to mitigate the degradation that could result.

Feasibility and challenges of addressing this CQ or CC :

We believe mitigating the impact of the storage lesion is feasible by reducing and controlling the oxygen concentration in the RBC unit prior to refrigerated storage. We are continuing our development of a device to do this and to generate the data demonstrating the effect of deoxygenation and anaerobic storage.

Name of idea submitter and other team members who worked on this idea : Andrew Dunham

Voting

3 net votes
3 up votes
0 down votes
Active

Goal 2: Reduce Human Disease

Human Lung Progenitor Cells, Lung Epithelial Differentiated iPSCs, and Therapeutics

What are the biological properties and key surface markers of human lung progenitor cells and lung epithelial differentiated iPSCs? How can these cell populations be targeted for therapeutic purposes, including regenerative therapy?

Submitted by (@skrenrich)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : Cystic Fibrosis Foundation

Voting

2 net votes
6 up votes
4 down votes
Active

Goal 3: Advance Translational Research

Translational Research for HIV/AIDS and HLB Health and Diseases

What are the best inroads for the NHLBI to support innovative approaches in the next 5-10 years, especially blood cell therapies based on hematopoietic stem cell and novel gene therapy approaches to control or even cure HIV infection?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

HIV control or possibly even HIV cure could result from developing novel cell therapies, especially hematopoietic stem cell (HSC) transplants, and might also result from early use of antiretroviral therapy in acutely HIV-infected individuals.

• Transplantation of HSC including engineered cells has the potential to eradicate HIV reservoirs for HIV cure: the Berlin patient treated with HSC transplant remains free of HIV and is still the only patient cured of HIV infection as of today;

• Identification of acute HIV infections through routine blood donor screening and early anti-retroviral therapy for identified HIV-infected donors can limit or even prevent the establishment of HIV reservoirs.

Feasibility and challenges of addressing this CQ or CC :

• The Berlin patient has provided the proof of concept that HIV infection can be eradicated, that is, sterilizing cure can be achieved, through HSC transplantation in combination with other therapies;

• Recent studies have shown that early identification of HIV infection and treatment of infected individuals with anti-retroviral therapy as soon as possible can significantly limit the size of the HIV reservoirs even if such early treatment may not be able to completely prevent the establishment of HIV reservoirs; routine blood donor screening for both anti-HIV antibodies and HIV RNA among blood donors offers unique opportunities to identify acute HIV infections.

 

 

For HIV cure, the challenges include:

 

• Generation of HIV-resistant HSCs in adequate quantity for transplantation;

 

• Efficiency of homing and expansion of HIV-resistant HSC transplants;

 

• Efficiency in replacing HIV-infected cells, including CD4+ resting cells as the major HIV reservoirs, with HIV-resistant HSCs following transplantation;

 

• Efficiency in immune reconstitution by HSC transplants;

 

• Safety of HSC transplantation with needed GVHD to eliminate HIV-infected resting T cells while avoiding irreversible damage to the host.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

-16 net votes
15 up votes
31 down votes
Active

Goal 2: Reduce Human Disease

Stem Cell Immunology

We now can create critical cell types like cardiomyocytes etc. from stem cells. Additionally, we are learning the rules of using these cells to rebuild tissues. A major gap in our knowledge relates to the immunobiology of these cells. Lessons from transplantation medicine are only partially applicable, because solid organs are more complex and likely more immunogenic than defined cell populations. How does the immune ...more »

Submitted by (@murry0)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

We now can generate large quantities of critical cell types whose deficiencies underlie many chronic diseases like heart failure. This breakthrough brings us to the next-level impediment: the immune system. While induced pluripotent stem cells have the potential to obviate rejection, in practical terms this is cost-prohibitive: It will cost huge amounts of money to produce and qualify a single patient's cell dose. Moreover, human cardiomyocytes are potent when given to infarcted hearts in the acute or sub-acute phase of infarction, but they have no benefit with chronic heart failure. The 6 months required to produce iPSC-cardiomyocytes precludes their autologous use for myocardial infarction.

 

We need an off the shelf cell therapy product for myocardial infarction that can be mass produced and qualified for large numbers of patients. This means an allogeneic product is necessary. Identifying the immune response to cardiomyocytes or other cell products will teach us how to precisely immunosuppress the patient, thereby minimizing complications, or alternatively, how to engineer the cells so as to avoid immunogenicity in the first place.

 

Lessons from the study of cardiomyocyte transplantation could extend to dopamine neurons, pancreatic beta-cells, retinal cells, myelinating cells and many other areas that cause common chronic disease.

Feasibility and challenges of addressing this CQ or CC :

We know a great deal of transplant immunology from hematopoietic stem cell transplantation (graft versus host) and from solid organ transplantation (host versus graft). There are good mouse and large animal (including non-human primate) models of stem cell differentiation and organ transplantation. This offers low hanging fruit where, in perhaps 5 years, we could discern the critical similarities and differences between transplanting stem cell derivatives and organ or marrow transplantation. These studies will inform clinical trials of allogeneic human stem cell derivatives that will be underway by then.

 

Success in this area will require bringing together researchers interested in stem cell biology and transplant immunology. A properly resourced RFA from NIH could be just the thing needed to promote this interaction.

Name of idea submitter and other team members who worked on this idea : Charles Murry, MD, PhD

Voting

23 net votes
45 up votes
22 down votes
Active

Goal 2: Reduce Human Disease

Harnessing Lung Regenerative Capacity to Improve and Increase Donor Lungs for Transplantation.

Using knowledge of matrix biology and lung development, what are useable methods to modify cadaveric donor lungs to provide a durable, effective organ replacement therapy?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

A major advance in this area will increase the number of donor lungs available for lung transplantation

Feasibility and challenges of addressing this CQ or CC :

A number of stem and progenitor cells involved in lung repair and regeneration have been identified. Targeting them for expansions in damaged donor lungs may turn these damaged lungs into healthier lungs that can then be used for lung transplant safely.

Most of the donor lungs are not suitable for lung transplantation because the premorbid conditions of the donors often also damaged the lungs. Bioreactors have been used to “rehab” these damaged lungs and optimizing the ex vivo condition in these bioreactors may accelerate the lung repair process.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

1 net vote
18 up votes
17 down votes
Active