Goal 2: Reduce Human Disease

Development of non-contrast alternatives in cardiac magnetic resonance imaging

Critical Challenge

Submitted by (@str0001)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Late gadolinium-enhancement cardiac magnetic resonance imaging (MR) plays a crucial role in the evaluation of patients with suspected myocardial scar tissue. Alternative methods to contrast-enhanced MR however are in need, given the number of patients who have concomitant compromised renal function and concern for nephrogenic systemic fibrosis. Noncontrast MR techniques such as diffusion-weighted imaging would complement and eventually replace gadolinium administration thus impacting the evaluation of those with suspected and confirmed infiltrative cardiac processes and systemic diseases.

Feasibility and challenges of addressing this CQ or CC :

Late gadolinium enhancement technique characterizes enhancement patterns of heart disease, identifies areas amenable to ablation, and aids in decisions pertaining to workup and therapy. The underlying mechanism of Brownian motion/diffusion in the expanded extracellular space makes diffusion weighted imaging a potential gadolinium-saving modality. Diffusion MR, applied primarily in the brain and abdominal imaging, is underutilized in the heart given respiratory and cardiac motion. A need exists to further develop and apply noncontrast MR techniques towards cardiovascular applications. Such methods are promising noncontrast alternatives to characterize patients with myocardial disease, determine those with differing prognoses, and direct appropriate therapies to subgroups.

Name of idea submitter and other team members who worked on this idea : Society of Thoracic Radiology

Voting

3 net votes
6 up votes
3 down votes
Active

Goal 2: Reduce Human Disease

Heart transplant surveillance

It is essential to develop clinically viable, non-invasive, less expensive technologies for the surveillance of allograft rejection in heart transplant patients. Critical challenges that exist in the near term or long term surveillance after transplant is the unavailability of molecular and cellular level markers that can be non-invasively imaged and quantified detect rejection and thus improve patient survival. Development ...more »

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Development of methods for near term or long term surveillance after transplant can help detect the rejection and thus improve patient survival

Feasibility and challenges of addressing this CQ or CC :

The fast growth in the imaging technologies and molecular and cellular imaging technologies are gaining foot in cardiovascular sciences and should be feasible within a decade

The current surveillance to detect transplant rejection requires repeated testing with endo myocardial biopsy and catheter angiography. Both technologies are highly invasive and very expensive. Post-transplant surveillance is focused on the cellular rejection in the near term after transplant and cardiac allograft vasculopathy in the long term.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

1 net vote
14 up votes
13 down votes
Active

Goal 2: Reduce Human Disease

Short comprehensive cardiac MR imaging in post-chemotherapy cancer patients

Critical Challenge

Submitted by (@str0001)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Cardiovascular disease and cancer are frequently identified in the same patient. Both diseases are highly prevalent in the United States population, and cancer or its therapies can result in cardiovascular disease. Early diagnosis and prediction of cardiovascular disease in patients to undergo therapy will identify patients at higher risk for cardiac dysfunction and enable earlier diagnosis of subclinical cardiac dysfunction.

Feasibility and challenges of addressing this CQ or CC :

Cardiovascular magnetic resonance imaging (MR) is a powerful imaging modality for evaluating the heart function. Specifically, MR techniques allow for quantifying regional heart function, e.g. strain and strain rate, and may provide earlier markers of cardiovascular disease development than global measures of heart function, e.g. left ventricular ejection fraction, as estimated by echocardiography. Early identification of subclinical heart failure of post-chemotherapy cancer patients will allow for early and on-time chemotherapy change and personalized treatment.

Name of idea submitter and other team members who worked on this idea : Society of Thoracic Radiology

Voting

3 net votes
6 up votes
3 down votes
Active

Goal 2: Reduce Human Disease

Image Repository

There is a need to digitize, remove identifiers, and archive, and catalog physical images, and to promote their use in clinical investigations.

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Enable leveraging existing resources and possible re-purposing of existing resources to address a wide variety of research questions.

 

This is a cross-study, cross-NHLBI, and even cross-NIH or beyond, need.

Feasibility and challenges of addressing this CQ or CC :

Digitized imaging data files are enormous. Advances in data storage, with corresponding decreases in cost, have enabled storage of these files. For some types of images, data format standards have also arisen.

Many studies have collected data using a wide variety of imaging technologies. While the extracted data have been utilized in analyses and incorporated into shared data resources, additional research could be done on the original images.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

4 net votes
12 up votes
8 down votes
Active

Goal 3: Advance Translational Research

Applying Imaging in Chronic Lung Diseases

How can chest CT or other imaging tools be optimally used to characterize expression and progression of chronic lung disease?

Submitted by (@jdc000)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

Chest CT scans provide anatomical information on disease pattern and severity that cannot be readily obtained otherwise. These imaging studies could be essential in reclassifying chronic lung diseases more effectively and in assessing disease progression more accurately.

Feasibility and challenges of addressing this CQ or CC :

The increasing use of chest CT scans for lung cancer screening will provide a large number of imaging studies that could transform pulmonary research in multiple chronic lung diseases. However, the images will need to be appropriately collected and analyzed.

Name of idea submitter and other team members who worked on this idea : Ed Silverman, James Crapo and COPDGene Executive Committee

Voting

33 net votes
47 up votes
14 down votes
Active

Goal 2: Reduce Human Disease

Novel technologies to save minutes and lives

There is a need to develop hand-held portable imaging or other technologies that can help paramedics to collect and transmit data when patients are undergoing cardiovascular events.

Submitted by (@nhlbiforumadministrator1)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Save time and lives for patients destined to Emergency

Feasibility and challenges of addressing this CQ or CC :

The component technologies are developed enough to integrate them in the next 5-10 years

Time spent waiting for an ambulance, driving to a hospital and enduring diagnostic tests before medical intervention can quickly add up, especially with patients undergoing cardiovascular events. In the era of internet, smartphones, and portable imaging and handheld technologies, saving valuable time during which paramedics can be assisting the emergency physicians in diagnosing heart attacks and help to identify and start the needed intervention at once when the patient arrive at the hospital.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

6 net votes
13 up votes
7 down votes
Active

Goal 2: Reduce Human Disease

What do we know about Heart Failure with Preserved Ejection Fraction (HFpEF)

Mortality is similar between HFpEF and HFrEF but we have currently no viable therapeutic option for HFpEF. There have been many large trials, but they all failed. Our basic understanding of the disease is very limited which contributed to failures of many prior trials and wasting $$$. We know very little about the pathophysiology of the disease . It is time to get back to the basic science and use our new tools (e.g. ...more »

Submitted by (@rezanezafat)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

Better therapy for HFpEF is an unmet clinical needs which will impact millions of patients

Voting

6 net votes
17 up votes
11 down votes
Active

Goal 2: Reduce Human Disease

Detection of rupture prone small aortic aneurysms

Critical challenges in the assessment of aortic aneurysms are: (1) Availability of reliable animal models that simulate the human pathology, (2) Availability of molecular imaging resources – identification of biomarkers, development of targeted imaging probes and pre-clinical imaging methods, and plasma markers that predict whether an aneurysm is prone to rupture or dissection, (3) Bringing together a wide array of multi-disciplinary ...more »

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Developing clinically viable methods to detect rupture prone aneurysms can lead to better methods of diagnosis and intervention and avoid preventable fatalities

Feasibility and challenges of addressing this CQ or CC :

Several other disease areas including oncological that had similar gap was filled by NIH (NCI) and the challenges were overcome in less than 10 years. The scientific expertise to fill the gap exists, however they work in silos, which need to be brought together to fulfil this gap and is achievable in less than 10 years

Assessment of aortic aneurysms that are prone to rupture or dissection has been an elusive target. Current clinical practice measures the aortic diameter and fails to relate to the pathophysiology and biomechanical properties of the aneurysm in deciding preventive surgery. Critical gap exists in the diagnosis of aneurysm especially with small aneurysms (3 - 5 cm in diameter) that are rupture prone. Based on autopsy about 10 percent of individuals with small abdominal aneurysms had undergone fatal rupture, while 40 percent with diameters of 7-10 cm had intact aneurysm and died from other causes. International Registry of Aortic Dissection found that 40% of thoracic aneurysms dissected at diameters smaller than 5 cm.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

7 net votes
18 up votes
11 down votes
Active

Goal 2: Reduce Human Disease

Imaging indicators of metabolic syndrome and cardiopulmonary disease

Critical Challenge

Submitted by (@str0001)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Obesity and metabolic syndrome affect a large portion of the population and affects multiple organ systems. Identifying obesity phenotypes by imaging will impact the significant healthcare issue presented by MetS and could provide a reliable, non-invasive index of disease severity, guide prevention and intervention response.

Feasibility and challenges of addressing this CQ or CC :

Metabolic syndrome, abnormal metabolism, may be potentially linked to obesity and cardiopulmonary disease. Theories exist but are in need of clarification. The relationship between metabolic syndrome and multiple other diseases including chronic obstructive lung disease, coronary atherosclerosis, and obesity warrants further investigation and can be elucidated through imaging. Advances in computed tomography (CT) and magnetic resonance imaging (MR) enable assessment of the cardiopulmonary manifestations, with promising MR techniques to complement high-resolution imaging data achievable with chest CT and coronary CT angiography. Assessment of CT and MR techniques in combination with three-dimensional quantitative analysis of manifestations of metabolic syndrome such as fat deposits derived from different adipocytes (white fat versus brown fat) such as in the subcutaneous, visceral, epicardial, and perivascular regions is feasible with current technology and may enable differentiation of those with varying risks of cardiovascular and pulmonary disease. The association of imaging parameters, metabolic syndrome, and associated diseases are in need of investigation, and knowledge gained may prove crucial for identifying those at risk for metabolic syndrome and at higher risk for complications in the large population of our country affected by obesity.

Name of idea submitter and other team members who worked on this idea : Society of Thoracic Radiology

Voting

6 net votes
10 up votes
4 down votes
Active

Goal 2: Reduce Human Disease

Preventing or reversing myocardial fibrosis

Conduct proof-of-concept studies and explore whether strategies to reverse or prevent fibrosis are feasible.

Submitted by (@nhlbiforumadministrator1)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

This challenge will lead to early studies of potential therapeutics for arrhythmias and heart failure. If successful, this would have huge impact.

Feasibility and challenges of addressing this CQ or CC :

Recent studies have identified some compelling signaling pathways that activate fibrosis so it is feasible to test them through creative experimentation.

Fibrosis and fibrogenesis in the myocardium are clear indications that heart function is either declining or progressing towards decline. Although much of the current research continues to focus on unraveling mechanisms that lead to fibrosis and activation of fibrogenesis, there is as yet less focus on potential mechanisms to prevent or reverse fibrosis. This was in part due to insufficient understanding of major causes of fibrosis and mechanisms that activate fibrogenesis. However, findings from recent studies show that there are several compelling therapeutic targets that are ready to be tested to see whether fibrosis can be reversed or prevented.

May need strategies on how to best to succeed in implementing the research - e.g., what research mechanisms, what kind of teams, what kind of expertise, etc. To fine tune this, a focused workshop for advice may be helpful.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

19 net votes
33 up votes
14 down votes
Active

Goal 2: Reduce Human Disease

Quantitative imaging biomarkers for chronic lung disease

Critical Challenge

Submitted by (@str0001)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Methods for stratifying patients with diffuse lung disease are crucial for predicting their clinical course and directing appropriate therapies accordingly. Currently imaging markers for prognostic stratification are limited, due to observer variability in characterizing the type and degree of computed tomography (CT) abnormalities. A reproducible method for categorizing varying diffuse lung diseases on CT imaging is needed, particularly in combination with other biomarkers in a multidisciplinary approach. With lung cancer screening, the characterization and stratification of patients with varying COPD phenotypes and interstitial lung disease are essential to aid in management of the large number of patients who currently satisfy criteria for CT lung cancer screening.

Feasibility and challenges of addressing this CQ or CC :

Currently the classification of diffuse lung disease on CT is based upon visual evaluation and qualitative or semi-quantitative evaluation of CT data. Diffuse lung disease manifests with varying CT findings and distribution within the lung. Computer-assisted tools for quantifying airways and parenchymal disease have been developed. More-sophisticated quantitative computer image-analysis methods, such as those that address three-dimensional spatial orientation, are possible given advances in computer capabilities yet remain in need of further development. Advances in magnetic resonance imaging (MR) technology, positron emission tomography (PET), and PET/MR will increase the ability to characterize diffuse lung disease quantitatively. The ability of such technology to differentiate subtypes within more frequently occurring and clinically-significant diffuse lung disease is feasible. Such tools would impact a large population, particularly given the potential need to phenotype emphysema and smoking-related interstitial pneumonias in those undergoing CT screening.

Name of idea submitter and other team members who worked on this idea : Society of Thoracic Radiology

Voting

7 net votes
9 up votes
2 down votes
Active

Goal 4: Develop Workforce and Resources

Training for radiologist researchers for effective translational research

Critical Challenge

Submitted by (@str0001)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

As targeted therapy and molecular mechanisms of disease are emerging, a mechanism to improve the ability of radiologists to perform translational research is crucial. Such knowledge is essential for collaborative multidisciplinary research that ultimately leads to imaging as disease-specific diagnostic and therapeutic tools to combat pulmonary and cardiovascular disease.

Feasibility and challenges of addressing this CQ or CC :

Knowledge in the molecular mechanisms of disease and the potential for imaging technology to advance via targeted imaging agents, positron emission tomography (PET), functional MR methods, PET/computer tomography, and PET/MR is increasing. The radiologist has in depth expertise within imaging technology, performance of studies, and diagnostic abilities of imaging techniques. A program directed towards developing imagers towards translational imaging research will include in-depth education and training in lung physiology, pulmonary disease mechanisms, multimodality imaging bridging CT, PET/CT, MR and PET/MR, and the molecular techniques. With such knowledge and training, radiologists will be prepared to serve as principal investigators and collaborators in multidisciplinary teams. An understanding of imaging technologies and their capabilities, the clinical challenges, and molecular techniques will enable imagers to provide innovative solutions to diagnostic dilemmas in pulmonary and cardiovascular disease.

Name of idea submitter and other team members who worked on this idea : Society of Thoracic Radiology

Voting

-1 net votes
5 up votes
6 down votes
Active