Goal 1: Promote Human Health

Intersecting Developmental Biology with Vascular Physiology and Biology

Although many think of the vasculature as a lump sum of vessels that all react in a similar fashion to a certain stimulus, e.g., alpha-adrenergic activation, this is not the situation. For example, coronary resistance vessels show little to no direct response to alpha-adrenergic activation while resistance vessels in most organs show marked constriction. Another example is the response of different vessels to angioplasty ...more »

Submitted by (@wchilian)

Voting

15 net votes
26 up votes
11 down votes
Active

Goal 2: Reduce Human Disease

Vascular biology and the pathophysiology of sepsis

Unravel the cellular & molecular mechanisms related to the vascular biology of sepsis and related cardiovascular collapse. The goal is to develop a new scientific framework for the prevention of sepsis related morbidity and mortality by applying novel approaches to discover new targets for biomarkers and therapy by promoting multidisciplinary research required for scientific cross-talk between complementary research disciplines ...more »

Submitted by (@greg.martin)

Voting

4 net votes
8 up votes
4 down votes
Active

Goal 1: Promote Human Health

A Systems Approach - Human Cardiac Electromechanical Activity

The challenge is to identify limitations in using data from non-human animal species for elucidation of human electromechanical function/activity and to identify what specific information and computational approaches need to be incorporated. To aid in achieving such a goal, it might be useful to convene a series of workshops to build consensus and improve communication among investigators working at the same horizontal ...more »

Submitted by (@nhlbiforumadministrator)

Voting

7 net votes
20 up votes
13 down votes
Active

Goal 2: Reduce Human Disease

UNDERSTANDING SLEEP AND CIRCADIAN DISORDERS AT A BASIC MECHANISTIC LEVEL

We need to understand sleep and circadian disorders at a more mechanistic level. This applies to both the pathogenesis of these disorders and to their impact on health. New neurobiological and molecular tools facilitate this research. The focus needs to be not only in brain but also the impact of these disorders on future of peripheral organs. The elucidation of the fundamental functions of sleep and the impact of ...more »

Submitted by (@jnoel0)

Voting

179 net votes
232 up votes
53 down votes
Active

Goal 4: Develop Workforce and Resources

Training approaches in lymphatic biology

The lymphatic vascular network connects the parenchymal interstitium through the nodes to the veins. Lymph serves as the transport pathway between these compartments and via its flow, controls interstitial fluid, macromolecular exchange, lipid absorption, immune cell trafficking and is critical to edema prevention/resolution, lipid metabolism, inflammation and immunity. Knowledge of this vascular network lags far behind ...more »

Submitted by (@dcz000)

Voting

12 net votes
13 up votes
1 down votes
Active

Goal 3: Advance Translational Research

Human Heart Systems Biology

In the human failing heart, it is the systems biology that ultimately fails: electrical, mechanical, and chemical perturbations in their function do not manifest in isolation, but critically impact on each other in health and disease. Investigation of human myocardium, unlike inbred rodent models, is challenging since no two humans are identical. There is a need for the collection and assessment of clinical patient data, ...more »

Submitted by (@janssen.10)

Voting

6 net votes
13 up votes
7 down votes
Active

Goal 4: Develop Workforce and Resources

Establishment of an independent study section on Pulmonary Vascular Biology and Translational Research

The research on pulmonary vascular biology including smooth muscle cell biology and endothelial cell biology and related pulmonary vascular diseases such as pulmonary hypertension and related right heart failure, and endothelial dysfunction in lung vascular inflammation and acute lung injury, as well as pulmonary embolism and lung transplantation has been rapidly expanding. The field is attracting an ever increasing ...more »

Submitted by (@yyzhao)

Voting

23 net votes
50 up votes
27 down votes
Active