Goal 2: Reduce Human Disease

The role of Extracorporeal Photopheresis (ECP) in the prophylaxis and treatment of acute & chronic Graft Versus Host Disease

In Acute Graft Versus Host Disease (aGVHD), we would like to examine whether early and intensified delivery of ECP as part of standard prophylaxis will decrease overall corticosteroid exposure while preserving expected relapse rates in patients undergoing unrelated donor hematopoietic stem cell transplantation (HSCT). Chronic GVHD (cGVHD) is common after HSCT (30-50% recipients) and is a major contributor to late transplant-related ...more »

Submitted by (@js2745)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

Patients who develop aGVHD undergo toxic therapy with high-dose corticosteroids, often for long durations, resulting in high morbidity and treatment related mortality. Alternatively, T cell depletion of the donor graft to reduce GVHD is associated with high rates of infection and relapse of the disease that led to the HSCT. Targeting other pathways of GVHD pathogenesis may preserve the beneficial immune reconstitution and graft-versus-tumor (GVT) effects, while ameliorating the severity of GVHD. One such pathway involves regulatory T cells (T regs), which inhibit T cell alloreactivity, and are correlated with the incidence and severity of GVHD without loss of GVT. To date, there is no consensus on a standard second-line therapy for aGVHD, and current approaches focus mainly on intensification of immunosuppression. Addressing this compelling question will help to decrease overall corticosteroid exposure while preserving the expected relapse rates in patients undergoing unrelated donor HSCT.

 

Appropriate initial therapy for cGVHD involves high doses & prolonged use (yrs) of corticosteroids, while patients still develop irreversible sclerotic manifestations of disease. Early intervention prior to disease onset may help prevent cGVHD development or lessen its severity, requiring less corticosteroid exposure. Addressing the compelling question for cGVHD will help decrease exposure to drugs with associated morbidity, while preserving expected relapse rates in these patients.

Feasibility and challenges of addressing this CQ or CC :

Feasibility:

 

* GVHD has relatively high incidence after HSCT and at the same time there is a lack of consensus on standard second line therapy for the disease. Thus, there will be increased interest in developing and participation in those studies.

 

** ECP is generally well tolerated and complications are infrequent.

 

*** There is a great potential for multi-discipline collaboration approach in this patients’ population.

 

*** There is an opportunity to engage industry partners in the design and support for these studies.

 

**** There are numerous scientific opportunities for meritorious science as there have been limited systematic studies of ECP mechanisms of as well as standardization of apheresis protocols based on GVHD disease state.

 

 

 

Challenges:

 

* Limited number of institutions providing ECP treatment.

 

** Cost of the procedures (although Centers for Medicare and Medicaid Services now covers ECP for cGVHD).

 

*** There is a very limited number of animal models available for apheresis research in general, and studies of the mechanism(s) of action of photopheresis have been very limited as well as difficult and expensive to perform. However understanding pathological mechanisms and its relationship to response to apheresis is critical for optimization and advancement of patient care.

 

****Lack of infra-structure for apheresis research.

Name of idea submitter and other team members who worked on this idea : Joseph Schwartz on behalf of ASFA

Voting

103 net votes
126 up votes
23 down votes
Active

Goal 1: Promote Human Health

Stem cell niche in the lung

How do lung progenitors recognize stem cell niches, and what cell-cell interactions mediate normal repair?

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

Research on the stem cell-niche interaction will enhance our understanding of stem cell behavior, enable manipulation of stem cell activity and differentiation potential, and facilitate the development of stem cell-based therapy.

Feasibility and challenges of addressing this CQ or CC :

Developing novel models for in vitro 3D culture and in vivo transplantation assays will facilitate the progress.

 

Recent advances have identified and characterized several lung progenitor cell types. However research gaps remain on understanding the interaction of stem cells with the niche, and how the microenvironment impacts on the stem cell activity during injury/repair.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

8 net votes
23 up votes
15 down votes
Active

Goal 2: Reduce Human Disease

The potency and safety of transfusable red blood cells

Can we identify approaches to improve potency and/or safety of transfusable RBCs? 42 day pre-transfusion storage of RBCs maximizes utilization, while minimizing waste. However, RBCs undergo changes during collection, manipulation and storage that may reduce their potency or safety. Progress in understanding markers that predict transfusion success at the time of collection and with storage remains slow. New technologies ...more »

Submitted by (@nareg.roubinian)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

While novel RBC storage methods have been described, the mechanisms underlying their efficacy has not been defined, a step that will be important for further improvements in this area. Some of these methods appear to improve efficacy of the RBC bioenergetic pathways; however, to date there have not been notable advances in reducing cytoskeletal defects common in stored RBCs. The development of new RBC preservation methods that minimize the impact of the storage lesion on specific areas of concern (e.g., diminished oxidation/peroxidation, decreased membrane fragility) is needed.

 

Use of ex vivo generated RBCs is an alternative to conventional donor-derived RBCs which can potentially improve product consistency, reduce the storage lesion, and improve safety. However, advances are needed before this approach is feasible on a large scale. While the development of blood substitutes including blood pharming will likely require more than 3-10 years before it can be ready for the clinic, Blood Pharming from hematopoietic stem/progenitor cells is now technically feasible and the recent development of genome editing methods suggests the exciting possibility of generating GMP compliant “immortal” stem cell sources to produce transfusable RBCs.

Feasibility and challenges of addressing this CQ or CC :

Research should include both pre-clinical and clinical studies to define optimal combinations of known factors preserving red cells (e.g. hypo-osmolarity, energy sources, antioxidants), and the development of methods for RBC pathogen reduction that do not increase the storage lesion.

 

Procedures for generating blood cells from cultured stem/progenitor cells is not currently cost-effective, limiting near term applications to special patient populations such as specific RBC phenotyping of rare donors for chronically transfused patients. Areas of research needed to advance the development of blood substitutes and blood pharming include: (a) new approaches to blood substitutes including artificial oxygen carriers generated from red cell lysates/components or engineered from combinatorial chemico-biological approaches (e.g., derivatization of hemoglobin, encapsidation of modulated oxygen carriers); (b) a better understanding of the biological properties of cultured RBCs with the goal of reducing blood pharming costs; (c) optimizing methods to expand stem cell populations while allowing differentiation to selected clinically relevant blood cell populations at clinically relevant levels; and (d) optimizing methodologies that faithfully replicate embryonic development to develop the cells of interest.

Name of idea submitter and other team members who worked on this idea : Nareg Roubinian, MD and Naomi Luban, MD for the NHLBI State of the Science in Transfusion Medicine

Voting

14 net votes
31 up votes
17 down votes
Active

Goal 3: Advance Translational Research

Can hair follicle stem cells be transformed into new cells or organs?

Dr. Cotsarelis of the Univ. of Pennsylvania identified the bulge area of the hair follicle, which is now thought to contain the hair's stem cells. These cells would seem to be readily available and unique to an individual person. Can further work be done to transform these cells into now only hair cells but other organ tissues?

Submitted by (@info00)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Voting

-15 net votes
5 up votes
20 down votes
Active

Goal 3: Advance Translational Research

Embedding the future of regenerative medicine into the open epigenomic landscape of pluripotent human embryonic stem cells

Large-scale profiling of developmental regulators and histone modifications by genome-wide approaches have provided powerful genome-wide, high-throughput, and high resolution techniques that lead to great advances in our understanding of the global phenomena of human developmental processes. However, without a practical strategy to convert pluripotent cells direct into a specific lineage, previous studies are limited ...more »

Submitted by (@xuejunparsons)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Large-scale profiling of developmental regulators and histone modifications by genome-wide approaches have provided powerful genome-wide, high-throughput, and high resolution techniques that lead to great advances in our understanding of the global phenomena of human developmental processes. However, without a practical strategy to convert pluripotent cells direct into a specific lineage, previous studies are limited to profiling of pluripotent human embryonic stem cell (hESC) differentiating multi-lineage aggregates, such as embryoid body that contain mixed cell types of endoderm, mesoderm, and ectoderm cells or a heterogeneous population of embryoid body-derived cardiac cells that contain mixed cell types of cardiomyocytes, smooth muscle cells, and endothelial cells. Their findings have been limited to a small group of genes that have been identified previously in non-human systems, and thus, have not uncovered any new regulatory pathways unique to human development. Although genome-wide mapping of histone modifications and chromatin-associated proteins have already begun to reveal the mechanisms in mouse ESC differentiation, similar studies in hESC are currently lacking due to the difficulty of conventional multi-lineage differentiation approaches in obtaining the large number of purified cells, particularly cardiomyocytes, typically required for ChIP-seq experiments.

Feasibility and challenges of addressing this CQ or CC :

Opportunity: Recent technology breakthrough in lineage-specific differentiation of pluripotent hESC by small molecule direct induction allows generation of homogeneous populations of neural or cardiac cells direct from hESC without going through the multi-lineage embryoid body stage. This novel small molecule direct induction approach renders a cascade of neural or cardiac lineage-specific progression directly from the pluripotent state of hESC, providing much-needed in vitro model systems for investigating the genetic and epigenetic programs governing the human embryonic CNS or heart formation. Such in vitro hESC model systems enable direct generation of large numbers of high purity hESC neuronal or cardiomyocyte derivatives required for genome-wide (e.g., ChIP-seq) profiling to reveal the mechanisms responsible for regulating the patterns of gene expression in hESC neuronal or cardiomyocyte specification. It opens the door for further characterizing, identifying, and validating functional elements during human embryonic development in a comprehensive manner. Further using genome-wide approaches to study hESC models of human heart formation will not only provide missing knowledge regarding molecular cardiogenesis in human embryonic development, but also facilitate rapid progress on identification of molecular and genetic therapeutic targets for the prevention and treatment of cardiovascular disease.

Name of idea submitter and other team members who worked on this idea : Xuejun Parsons

Voting

-24 net votes
9 up votes
33 down votes
Active

Goal 3: Advance Translational Research

Spinal Cord Injury: hype, unmet promises, and misery which does not need to be

Research to "fix" spinal cord injury in humans, has been insanely hyped, rare in reality, and very disappointing in its clinical applicability to human patients. After a parade of rat models, mouse models, cat models, dog models, African green monkey models, pig models, guinea pig models, hamster models, rabbit models, gerbil models, etc. one wonders whether most researchers or funders will ever have any interest in ...more »

Submitted by (@mgwmgw)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

So, how about we put a moratorium on FDA approval of all research related to a cure for spinal cord injury when done by any persons or organizations who have not published every single one of their past experiments in the time required, and for any research which involves other species than humans.

 

Also, how many different ways of creating stem-like cells do we need? Let's stop creating stem-like cells and start applying the ones we have to human patients.

 

How about spending the animal model money instead on improving the quality of life for people living with disabilities. Let us start with actually enforcing the ADA on all new enough buildings.

 

When we make technology for doctors to use, we consult doctors. When we make technology for teachers to use, we consult teachers. When we make technology for disabled people to use… we consult insurance companies, and medical professionals who are not and have never been disabled. We fail to apply the most basic usability testing to the tools which disabled people must use. For example, has any wheelchair designer tried to propel a manual wheelchair uphill on wet grass? How about across a cobblestone street? or down a normally bumpy sidewalk? Now imagine that your butt has atrophied and you are sitting on your hip bones. How painful would that be? Now remember that pressure sores resulting from this bad design can be fatal, and then tell me why we do not take this more seriously.

Feasibility and challenges of addressing this CQ or CC :

The misery which does not need to be is not a new idea: http://badcripple.blogspot.com/2015/01/obsession-with-walking.html

 

Let's get the price of tools for disabled people down to the point where most patients can really afford them, or where the insurance can actually cover them. Let's get exoskeletons price-competitive with wheelchairs, for example, instead of using them to make soldiers able to carry heavier packs in war.

Name of idea submitter and other team members who worked on this idea : Mary-Anne Wolf (inspired by the Bad Cripple blog of William Peace and by the Wheelchair Driver website forum)

Voting

-7 net votes
5 up votes
12 down votes
Active

Goal 3: Advance Translational Research

How can we develop more selective immunosuppression for allogeneic hematopoietic cell transplantation?

Graft versus host disease (GVHD) remains the most significant complication of allogeneic hematopoietic stem cell transplantation (HCT). While the use of HCT has grown significantly safer and has demonstrated broad efficacy in the setting of a broad range of blood diseases, immunosuppressive therapy has not dramatically evolved since the introduction of calcineurin inhibitor-based approaches decades ago. The availability ...more »

Submitted by (@kkomanduri)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Details on the impact of addressing this CQ or CC :

GVHD remains a critical problem and major barrier to the more widespread utilization of HCT, especially for nonmalignant diseases, where tolerance of treatment-related mortality is understandably low.

 

There is a compelling need for novel immunosuppressive agents that can effectively limit alloreactivity mediated by donor T and B cells, while relatively sparing pathogen-specific T cells, including those mediating antiviral T cell responses important in the post-HCT interval.

 

In the past decade, drug development has facilitated the introduction into preclinical and clinical trials of a broad range of agents that in addition to targeting pathways of interest in target cells (e.g., aberrant signaling in cancer cells) may also effectively inhibit T and/or B cell responses. Examples include hypomethylating agents (e.g., azacitidine), HDAC inhibitors (e.g., vorinostat), MEK inhibitors (e.g., trametinib) and BTK inhibitors (e.g., ibrutinib). Each of these classes of agents has been demonstrated in preclinical and/or clinical studies to also limit alloreactive T cells, and/or augment regulatory T cell responses, leading to a net reduction of alloreactivity. Unlike traditional agents (e.g., the calcineurin inhibitors) these agents appear to be more selective, and in some cases may have dual benefit in reducing relapse.

 

The NHLBI can facilitate the identification and translation to clinical practice in the setting of HCT trials of novel immunosuppressive agents.

Feasibility and challenges of addressing this CQ or CC :

Research funding targeted to improving the pipeline of novel immunosuppressive agents could have immediate and dramatic impact in the field of HCT, especially impacting its application for nonmalignant diseases. Patients lacking optimal registry donors, especially those from underrepresented minority groups, will particularly benefit from improvements in immunosuppression, as patients receiving less than optimally matched donors are at much higher risk of GVHD.

 

The NHLBI can encourage and facilitate research that tests compounds that have already passed through the drug development process, but in many cases were not intended to function as immunosuppressive agents. Compelling preclinical studies have suggested that targeted inhibition of T and B cells, and/or epigenetic modifiers can lessen alloreactivity while preserving beneficial cellular immune responses and facilitating immune reconstitution.

 

It will be far easier to appropriate therapeutic agents already developed for another purpose than to do novel drug development from scratch. In many cases, preclinical studies have highlighted the therapeutic potential in immunosuppression for agents that have been developed to treat malignancies, but yielded suboptimal success. Research that encourages the development of these drugs as part of a combined immunosuppressive/immunomodulation approach may rescue such compounds, while yielding potential dramatic advances in clinical HCT.

Name of idea submitter and other team members who worked on this idea : Krishna Komanduri, M.D.

Voting

106 net votes
129 up votes
23 down votes
Active

Goal 3: Advance Translational Research

Bone Marrow Stem Cell Transplant in Peds sibling matched SCD

There is a need to improve accessibility of Bone Marrow Stem Cell Transplantation (BMSCT) for Sickle Cell Disease patients who are most likely to benefit from this treatment option. 1. Building a culture of trust between and among primary care providers, specialists, patients/families, and other stakeholders 2. Consensus building around BMSCT as an acceptable treatment alternative (as opposed to another research endeavor) ...more »

Submitted by (@nhlbiforumadministrator)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

1. It could potentially decrease the prevalence of SCD and significantly decrease the overall morbidity and mortality associated with SCD in children with matched sibling donors.

2. It could increase the awareness of health professionals who have a low awareness of the role of BMSCT in the treatment and cure of SCD (i.e., those in rural areas)

3. It can improve patient/family access to information and communications to facilitate informed discussion and choice for all SCD treatment options

4. It could open the gateway for more therapeutic applications for other genetic diseases

Feasibility and challenges of addressing this CQ or CC :

1. The science in this has evolved substantially such that BMSCT is a viable therapeutic option with reduced morbidity and mortality in the sibling matched population

2. There is an opportunity to broaden current collaborations with other agencies and the BMSCT community to expand the accessibility of their research forward.

3. Other agencies are emphasizing work in the area of BMSCT particularly for hemoglobinopathies.

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

52 net votes
80 up votes
28 down votes
Active

Goal 2: Reduce Human Disease

Stem Cell Biology

There is a need to develop an artificial and functional hematopoietic stem cell (HSC) niche that allows for the expansion of repopulating HSCs.

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

Methods to expand hematopoietic stem cells have continued to be examined extensively because stem cell numbers in the graft are important for clinical outcomes following transplantation. These numbers are particularly relevant in umbilical cord blood (UCB) transplantation, where low numbers of stem cells are directly related to delayed hematopoietic and immune reconstitution. Improved HSC expansion strategies may significantly impact transplantation outcome, enabling broader applications beyond UCB transplantation. Furthermore, these strategies are also needed to realize the full therapeutic potential of genome editing technologies to correct hematopoietic stem cells derived from patients with hematologic disorders. Since efforts to expand HSCs in cytokine-supported liquid cultures have been largely unsuccessful, efficient expansion will require an appropriate context that is provided by the hematopoietic stem cell niche. Future studies must also evaluate how niche signals regulate stem cell function to optimize cell expansion, and proper humanized mouse models must be developed to help predict stem cell function and regulation by the niche.

Name of idea submitter and other team members who worked on this idea : Alice Kuaban on behalf of the American Society of Hematology (ASH)

Voting

28 net votes
46 up votes
18 down votes
Active

Goal 3: Advance Translational Research

Translational research supporting stem cell therapy for cardiovascular disease

Translational research supporting stem cell therapy for cardiovascular disease, including: core laboratories for preclinical IND-enabling studies (e.g., PACT), and clinical trials networks for evaluating promising new treatments (e.g., CCTRN).

Submitted by (@judith.l.bettencourt)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

The most cost effective scientific procedure ever utilized to answer the risk benefit question posed by a new intervention to be used in humans is a clinical trial. Major clinical trials are their most effective when planted in controversial ground (MRFIT, CAST, ALLHAT). Like these studies, which were caught in a controversial dynamic of uncertainties and disparate sets of expectations, a clinical trial network to assess cell therapy is precisely what is needed.

Experienced researchers recognize the current inimical environment of cell therapy. Now - as before - some forces argue that new therapy offers no benefits, while other equally vehement constituents contend that the benefits of therapy are so great, and the risks so small, that the treatment requires little if any regulation and should be available at once to the US public. Each side provides thunder, but little light.

It is precisely in this contentious environment where passions argue beyond the data that clinical trials are required. Their construction of the most objective view of the strengths and weaknesses of the intervention comes at a cost, but the answers these well designed and concordantly executed studies provide is the clearest illuminations of the benefits and risks of human cell therapy.

Feasibility and challenges of addressing this CQ or CC :

Based on the unmet clinical needs in the treatment of cardiovascular disease and the compelling early evidence for the promise of cell therapy, NHLBI created the Cardiovascular Cell Therapy Research Network in 2007. Now in its ninth year, the Network has completed three major clinical trials in cell therapy. It has published 35 manuscripts in prestigious clinical journals including JAMA, Circ, and Circ Research. Its biorepository has published two manuscripts relating baseline phenotype findings to measures of left ventricular function. A fourth clinical trial is underway assessing the effect of cell therapy on peripheral vascular disease. The Network is also proceeding with the largest effort to assess the effect of CSC cells in patients with heart failure - the first clinical trial that will assess the effect of combined cell therapy in heart failure patients. In addition, CCTRN will study the effect of allogeneic mesenchymal stem cells in patients with anthracycline-induced cardiomyopathy. Each of these protocols is NHLBI and FDA approved.

CCTRN’s reputation of conducting and then promulgating the results of high quality clinical trials makes it the most effective mechanism to assess the benefits of cell therapy in cardiovascular disease. It is important to continue to fund the infrastructure already in place to ensure its continued high quality operation and its place as the cornerstone of cardiovascular clinical cell therapy research in the United States.

Voting

115 net votes
149 up votes
34 down votes
Active

Goal 3: Advance Translational Research

Overcoming barriers to translational regenerative medicine

Current stem cell based approaches to translational medicine predominantly show modest efficacy. Most research rest on accepting existing limitations and focusing upon "tweaks" to the experimental model rather than taking on important barriers head on. The efficacy of stem cell-based regenerative medicine will never be fully realized unless we stop trying overly simplistic approaches such as"more is better" and start ...more »

Submitted by (@heartman4ever)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Critical Challenge (CC)

Details on the impact of addressing this CQ or CC :

The field of regenerative medicine holds great potential but we risk losing the public trust by hyperbolic promises, modest efficacy, and incremental research steps. Truly innovative research will transform the landscape and offer truly novel therapeutic approaches to many current incurable conditions. The result is a dramatic shift in the practice of medicine, new options for treatment, enhanced engagement of the public in biomedical research and new growth opportunities for the NIH and biotech sectors.

Feasibility and challenges of addressing this CQ or CC :

The future is here for regenerative medicine, but for the most part the potential and practice has been unrealized or poorly executed. The challenge is to identify the limiting factors and sweep them aside. There is broad and surprisingly consistent consensus on what the barriers are to successful regenerative therapy, but it seems most researchers are complacent and accept these limitations as inherent in the system rather than try to find truly combative approaches to overcome the barriers to enhancing regenerative processes. So it is essential to change the current mindset and push for a full frontal attack on the barriers that impede successful regeneration rather than minor modifications or uninspired brute force approaches that ignore the underlying mechanistic issues. Also, a major challenge is the hyperbole and overselling of research findings and impact by researchers and their institutions looking to capitalize upon the "discovery de jour." Such overly optimistic and unrealistic promises undermine our position in the public eye and compromise our future ability to earn the public trust.

Name of idea submitter and other team members who worked on this idea : M Sussman

Voting

-6 net votes
14 up votes
20 down votes
Active

Goal 2: Reduce Human Disease

Lung progenitors and disease

What is the role of lung stem/progenitor cells in disease?

Which diseases involve stem cell defects?

Submitted by (@nhlbiforumadministrator1)

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? : Compelling Question (CQ)

Name of idea submitter and other team members who worked on this idea : NHLBI Staff

Voting

-4 net votes
13 up votes
17 down votes
Active