Goal 2: Reduce Human Disease

The role of Extracorporeal Photopheresis (ECP) in the prevention and treatment of rejection of heart and lung transplants

According to the ISHLT, more than 4,000 patients undergo a heart transplant each year, and almost 4,000 receive single or double lung transplants. Their prognosis depends heavily on the avoidance of rejection, which claims the majority of their lives. For heart transplant recipients, the median survival is 11 years, while for lung transplant recipients, it is approximately 5 years. The current most common anti-rejection ...more »

Submitted by (@mmarques)

Voting

80 net votes
102 up votes
22 down votes
Active

Goal 3: Advance Translational Research

Increasing Regenerative Medical Strategies in Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is a complex, progressive condition characterized by high blood pressure in the lungs and restriction of flow through the pulmonary arterial system. Current PAH therapies mainly act of the vasoconstrictive component of the disease; however there is a widely accepted view that another contributor to the disease is an abnormal overgrowth of cells that line the pulmonary arteries, which ...more »

Submitted by (@michaelg)

Voting

71 net votes
81 up votes
10 down votes
Active

Goal 1: Promote Human Health

Mechanisms of Vascular Stiffness

Increased vascular stiffness has been identified as an important cardiovascular event that accompanies aging and cardiovascular disease. Although multiple vascular changes have been identified and suggested to cause increased vascular stiffness, our understanding of the underlying mechanisms needs to be refined in order to develop useful therapeutic strategies to prevent or reverse these changes. An example of critical ...more »

Submitted by (@meiningerg)

Voting

55 net votes
88 up votes
33 down votes
Active

Goal 1: Promote Human Health

Funding of Stem Cell/Lung Regeneration Research

How to "cure" a chronic, incurable disease - A potential giant step in saving the lives of many thousands of Americans, and potentially millions worldwide, who are afflicted with COPD, the third leading cause of death in the U.S. The financial effect of COPD in the United States alone is well over $50 billion per year. It is estimated that some 30 million Americans have COPD, which of course means that at least that ...more »

Submitted by (@jimandmarynelson)

Voting

25 net votes
32 up votes
7 down votes
Active

Goal 2: Reduce Human Disease

Stem Cell Immunology

We now can create critical cell types like cardiomyocytes etc. from stem cells. Additionally, we are learning the rules of using these cells to rebuild tissues. A major gap in our knowledge relates to the immunobiology of these cells. Lessons from transplantation medicine are only partially applicable, because solid organs are more complex and likely more immunogenic than defined cell populations. How does the immune ...more »

Submitted by (@murry0)

Voting

23 net votes
45 up votes
22 down votes
Active

Goal 3: Advance Translational Research

To find specific medical therapies to treat the wide array of human vascular malformations and vascular tumors.

Vascular malformations and vascular tumors, together referred to as vascular anomalies, comprise a complex and wide array of diseases in which there is a fundamental disruption in blood and lymphatic vasculature. The lesions disrupt organ function, destroy tissue, cause bleeding, increase infections and can threaten life. At present, there are some medical therapies but none are specifically targeted to an underlying ...more »

Submitted by (@joyce.bischoff)

Voting

18 net votes
20 up votes
2 down votes
Active

Goal 1: Promote Human Health

The coupling of mechanical stress to biochemistry, molecular biology and electrophysiology

Cells aren’t beakers holding soluble reactants waiting to be mixed. Cells are structured objects where life forms as a flow of free energy between three pools: chemical, electrical and mechanical. Most papers in the literature ignore structure (except of Xray or EM of specific proteins) and almost all ignore the coupling of mechanics to the other pools. Cells cannot be studied with in vitro experiments. We can study single ...more »

Submitted by (@nhlbiforumadministrator1)

Voting

9 net votes
29 up votes
20 down votes
Active

Goal 3: Advance Translational Research

Regenerative Medicine 2.0 in Heart and Lung Research - Back to the Drawing Board

Stem cell therapies have been quite successful in hematologic disease but the outcomes of clinical studies using stem cells for cardiopulmonary disease have been rather modest. Explanations for this discrepancy such as the fact that our blood has a high rate of physiologic, endogenous turnover and regeneration whereas these processes occur at far lower rates in the heart and lung. Furthermore, hematopoietic stem cells ...more »

Submitted by (@jalees)

Voting

7 net votes
11 up votes
4 down votes
Active

Goal 2: Reduce Human Disease

Influence of the Gut Microbiome on Pulmonary Immunity in HIV-Infected Individuals

It has become increasingly clear that gut microbiota have a tremendous impact on human health and disease. While it is well known that commensal gut bacteria are crucial in maintaining immune homeostasis in the intestine, there is also evidence of indirect effects on the lung. Multiple studies have shown that alterations in gut microbiota can lead to severe defects in pulmonary immune responses and reduced ability to ...more »

Submitted by (@brent.palmer)

Voting

3 net votes
7 up votes
4 down votes
Active

Goal 2: Reduce Human Disease

Mitigating risks due to the RBC storage lesion and vulnerable patients

What are the underlying dependencies (genomic, metabolic, disease) in individual donors that either accelerate or delay the changes to red blood cells during refrigerated storage? What methods of preparation might protect patients from the risks posed by the accelerated degradation of RBCs provided by "poor storers"? What characteristics of individual patients make them particularly vulnerable to transfusion of red ...more »

Submitted by (@andrew.dunham)

Voting

3 net votes
3 up votes
0 down votes
Active