Showing 6 ideas for tag "cardiomyocyte"
(@paulbrookes) kudos icon +

Goal 1: Promote Human Health

Adult Cardiomyocytes in Culture

So much basic cardiovascular discovery relies on cell culture models. While cardiac cell lines exist (e.g. HL-1, H9c2), these often poorly model aspects of cardiomyocyte function in-situ (e.g. contractile function, metabolism). In contrast, primary cardiomyocytes isolated from adult animals (especially mice!) are not readily amenable to culture conditions. Even if cells can be kept alive, they are often refractory to... more »

Voting

-25 net votes
12 up votes
37 down votes
Active
(@xuejunparsons) kudos icon +

Goal 3: Advance Translational Research

Exploring Future Cardiovascular Medicine: Heart Precursors Directed from Human Embryonic Stem Cells for Myocardium Regeneration

Cardiovascular disease (CVD) is a major health problem and the leading cause of death in the Western world. Currently, there is no treatment option or compound drug of molecular entity that can change the prognosis of CVD.

Voting

-19 net votes
9 up votes
28 down votes
Active
(@xuejunparsons) kudos icon +

Goal 3: Advance Translational Research

Deriving Cardiac Elements from Pluripotent Human embryonic Stem Cells for Heart Reconstitution

to date, the existing markets lack a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential, which has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged human heart in cardiovascular disease.

Voting

-33 net votes
10 up votes
43 down votes
Active
(@xuejunparsons) kudos icon +

Goal 3: Advance Translational Research

Current State of Regenerative Medicine: Moving Stem Cell Research from Animals into Humans for Clinical Trials

Realizing the developmental and therapeutic potential of pluripotent human embryonic stem cell (hESC) derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation.

Voting

-21 net votes
13 up votes
34 down votes
Active
(@xuejunparsons) kudos icon +

Goal 3: Advance Translational Research

Embedding the future of regenerative medicine into the open epigenomic landscape of pluripotent human embryonic stem cells

Large-scale profiling of developmental regulators and histone modifications by genome-wide approaches have provided powerful genome-wide, high-throughput, and high resolution techniques that lead to great advances in our understanding of the global phenomena of human developmental processes. However, without a practical strategy to convert pluripotent cells direct into a specific lineage, previous studies are limited... more »

Voting

-24 net votes
9 up votes
33 down votes
Active
(@xuejunparsons) kudos icon +

Goal 3: Advance Translational Research

The Designation of Human Cardiac Stem Cell therapy Products for Human Trials or First-in-Human Studies

For successful pharmaceutical development of cardiac stem cell therapy, the human cardiac stem cell therapy product must meet certain commercial criteria in plasticity, specificity, and stability before entry into clinical trials.

Voting

-14 net votes
12 up votes
26 down votes
Active