Showing 3 ideas for tag "science"

Goal 2: Reduce Human Disease

Behavior change labs: an interdisciplinary team approach

Will integration of behavior science in clinical research improve effectiveness of interventions for HLBS diseases associated with behavioral risk factors?

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? Compelling Question (CQ)

Details on the impact of addressing this CQ or CC

Currently, there is no industry support for T1 (basic to clinical) behavioral research and therefore little incentive for basic and clinical behavioral scientists to work together to develop and test new, innovative strategies for changing HLBS-related behaviors based on basic behavioral science findings on motivation, perception, cognition and social relationships. Bringing together collaborative, interdisciplinary teams of basic behavioral scientists and clinically-oriented behavioral researchers could spur development and testing of innovative new approaches to difficult HLBS-related behavioral problems such as obesity, unhealthy diets, sedentary lifestyles, smoking and non-adherence to preventive and therapeutic HLBS regimens.

Feasibility and challenges of addressing this CQ or CC

New research in the behavioral sciences is elucidating the basic psychological, cognitive, social and behavioral processes underlying behavior and behavior change. Findings in this area could be developed into new strategies targeting problematic HLBS-related behaviors, but a mechanism for developing and testing novel ideas is needed. Networks designed to bring together basic and clinically-oriented behavioral researchers can enable better understanding of the bases of HLBS-related behaviors and accelerate the translation of findings into new approaches.
Adopting and maintaining healthy habits and lifestyles – such as eating healthy diets, engaging in regular physical activity, stopping smoking, and regularly taking prescribed medications – are crucial to heart, lung, blood and sleep (HLBS) health (Akesson et al, 2014; Mozaffarian, 2014). However, for most people, engaging in and maintaining a healthy lifestyle is challenging. Interventions designed to promote behavior change have had limited success, often influencing individuals over the short-term but failing to alter behaviors over longer periods of time, which is necessary to realizing the full benefits of a healthy lifestyle. Underlying the problematic behaviors associated with HLBS-related behavioral risk factors are fundamental psychological, motivational, cognitive and social processes that represent promising targets for the development of new, more effective behavioral interventions. For example, basic behavioral scientists are investigating the role of poor executive function in unhealthy eating behavior and exploring new ways to address the "self-control" failures that lead to impulsive eating.

However, unlike the biomedical arena where the translational pathway from basic science to clinical application is supported by both NIH and industry, there is no industry support and relatively little NIH funding devoted to T1 behavioral research -- i.e., research translating basic behavioral science findings into clinically significant behavioral interventions. As a result, basic behavioral science researchers have little incentive to collaborate with clinical researchers to develop and test novel behavioral treatments. Bringing together collaborative, interdisciplinary teams of basic behavioral scientists and clinically-oriented behavioral researchers could spur development and testing of innovative new approaches to difficult HLBS-related behavioral problems.

A compelling question is how to bring together these disparate researchers over a long enough time frame to enable them to identify, develop and testing new strategies for tackling resistant behavioral problems. One way to address this question is to fund a network of "behavior change labs," each of which brings together teams of basic behavioral scientists who are investigating the bases of behavior and behavior change with clinical researchers interested in designing, optimizing and testing novel ideas for tackling the difficult behavioral problems represented by obesity, unhealthy diets, sedentary lifestyles, smoking and non-adherence to medications used to prevent or treat HLBS diseases and disorders.

Name of idea submitter and other team members who worked on this idea NHLBI Staff

Voting

83 net votes
129 up votes
46 down votes
Active

Goal 2: Reduce Human Disease

What types of questions are most likely to improve the health of the public? The importance of discovery science.

Congressional eagerness to see research funding translate into improvements in health care may make studies that address “how-to-deliver-care-questions” seem attractive. But the answers to “how–questions” are often so context dependent that the findings are neither generalizable nor durable. The answers to “how–questions” too often become obsolete when the health-care system, the electronic medical record, or the insurance... more »

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? Compelling Question (CQ)

Details on the impact of addressing this CQ or CC

Improvement in the health of the public.

Feasibility and challenges of addressing this CQ or CC

It is easily a matter of focus.

Name of idea submitter and other team members who worked on this idea Psaty & Tracy

Voting

22 net votes
29 up votes
7 down votes
Active

Goal 2: Reduce Human Disease

Heart Failure Therapies

We need much more support for critical basic research to understand and develop transformative therapies for this enormous health care burden. This is not simply a question of epidemiology and large multicenter population data bases. We really need hard core science. It is impossible to know where the next breakthrough will come, and setting aside funds for hot button things - stem cells, or iPS, or gene editing per... more »

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? Compelling Question (CQ)

Feasibility and challenges of addressing this CQ or CC

NIH needs to stop trying to guess what the next big thing is and putting funds aside to support something that is popular at the moment. This has been done frankly with GWAS, with Stem cells, and perhaps ongoing now with "personalized medicine". All hot areas, but so are a ton of other things. IN my 30 years as a physician scientist, I cannot count on one hand the number of discoveries that were really transformative that came out of this type of ear-marked planning. Need more resources to support innovative individual scientists, particularly those with a track record of discovery, translation, and iinnovation We do not do that well enough at all.

Voting

6 net votes
18 up votes
12 down votes
Active