Showing 2 ideas for tag "regulatory"

Goal 3: Advance Translational Research

Facilitating the translation of discovery science into proof of concepts in preclinical models

What steps can the research community take to facilitate the translation of discovery science into proof of concepts in preclinical models and in humans for diagnosis, prevention, and treatment?

• Current regulatory environment
• Lack of communication between discovery and clinical research worlds
• Lack of training
• Getting industry, academia, and NHLBI to partner; and the business model to make it happen.
• Limited... more »

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? Compelling Question (CQ)

Details on the impact of addressing this CQ or CC

• Increased number of novel therapeutics, diagnostics and devices in early phase clinical trials
• Increased impact in rare diseases and unmet needs
• Increased number of licensed IPs from academic centers

Name of idea submitter and other team members who worked on this idea NHLBI Staff

Voting

17 net votes
25 up votes
8 down votes
Active

Goal 3: Advance Translational Research

NHLBI Cardiovascular Engineering Strategy

Most impressive and impactful advances in CV diagnostics and therapies came in the last 50 years from CV engineering, including implantable devices and imaging technology. CV engineers are developing next breakthrough technology including tissue engineering and flexible electronics. However, organizational structure of NIH does not have an entity responsible for strategic development of CV engineering. NIBIB does not... more »

Is this idea a Compelling Question (CQ) or Critical Challenge (CC)? Critical Challenge (CC)

Details on the impact of addressing this CQ or CC

Cardiovascular Science produced numerous fundamental ideas, which frame our approaches to diagnostics and therapy of heart disease. However, translating these ideas to clinic very often requires engineering approaches. Examples of such breakthrough therapies are implantable pacemakers and defibrillators, stents, MRI, CT and many other imaging modalities. NIBIB supports many fields of biomedical engineering, except cardiovascular! NHLBI lacks a branch responsible for strategic development of cardiovascular engineering as a critical pathway to translation of basic science ideas. There is no study section or review group focusing on cardiovascular engineering. As a result, most of CV Engineering grants are reviewed by CV biologists, who lack engineering background and have quite different priorities and vision of the field. Next breakthrough developments will happen in tissue engineering, flexible/stretchable/biodegradable electronics, novel imaging modalities, computational physiology, and other classical biomedical engineering sub-fields. Unfortunately, they are less likely to happen in cardiovascular field, because NHLBI lacks corresponding organizational structure. A working group should be formed to frame NHLBI's vision for the future of cardiovascular engineering as an indispensable component for translation from CV biology to CV therapy.

Feasibility and challenges of addressing this CQ or CC

Biomedical engineering has trained several generations of professionals in academia and industry, which pursue basic and translational research and development with great degree of success. CV Engineering is a standard component in numerous BME Departments. Large number of senior and junior CV engineers have been recognized for their significant contribution to CV health. There is enormous CV engineering expertise and experience, which should be leveraged by NHLBI, in order to broadly define institutional strategy not only for CV biology but also for CV engineering, which are equally important in development of future breakthrough therapies for CV disease. Currently, support for CV engineering is scattered across numerous mostly biology focused groups, lacking strategic vision and coherent policy. A number of talented CV engineers are forced to leave the field to pursue other areas of biomedical engineering, which enjoy better-organized professional group support.

Name of idea submitter and other team members who worked on this idea Igor Efimov

Voting

8 net votes
17 up votes
9 down votes
Active