Showing 22 ideas for tag "biology"
(@chuck.sanders) kudos icon +

Goal 2: Reduce Human Disease

Bringing Personalized Biochemistry and Biophysics to Bear on Problems of Personalized Heart, Lung and Blood Medicine

Precision medicine will provide unprecedented opportunities to tailor health care based on knowledge of personal patterns of genetic variations. These variations usually impact protein or RNA sequences, resulting in altered properties. These alterations can result in increased susceptibility to a particular disease or intolerance to common therapeutics. To take full advantage of knowing a patient’s set of gene variations,... more »

Voting

-2 net votes
9 up votes
11 down votes
Active
(@greg.martin) kudos icon +

Goal 2: Reduce Human Disease

Novel methods to diagnose and treat microvascular ischemia

Microvascular ischemia is common, particularly in the setting of critical illness. We need better ways to evaluate, diagnose and treat these conditions, whether they relate to microvascular myocardial ischemia, as a primary diagnosis of complication of other acute illness, or non-myocardial ischemia during the course of surgery, injury, infection or acute illness.

Voting

0 net votes
2 up votes
2 down votes
Active
(@nhlbiforumadministrator1) kudos icon +

Goal 1: Promote Human Health

Cardiac Engineering – Deciphering the Cardiome

To maintain cardiac health and prevent disease, there is a need to decipher the cardiome of cells and genes and use this knowledge (1) to better understand cardiac structure and function and (2) to engineer systems on the level of organs, organ systems, and the entire individual.

Voting

-16 net votes
10 up votes
26 down votes
Active
(@ckevil) kudos icon +

Goal 2: Reduce Human Disease

Redox regulation of cardiovascular and lung disease through thiols

Redox imbalance as represented by alterations in oxidative versus reductive stresses are well appreciated to occur during nearly all forms of cardiovascular and lung diseases. However, specific molecular mechanisms responsible for these changes remain largely unknown and poorly organized. Study of redox biology principals has revealed that protein cysteine thiols are a unique target for redox posttranslational modifications... more »

Voting

-5 net votes
5 up votes
10 down votes
Active